Photoregulation of Biosynthetic Activity of Lentinula edodes (Berk.) Pegler Using Colloidal Solutions of Metal Nanoparticles and Low-Intensity Laser Radiation

Article Preview

Abstract:

The paper presents new data on the complex use of colloidal solutions of nanoparticles (NPs) and low-intensity laser radiation on the biosynthetic activity of the edible medicinal mushroom Lentinula edodes (L. edodes) in vitro. Traditional mycological methods, colloidal solutions of metals (Ag, Fe, and Mg NPs), and unique photobiological methods were used. An argon laser at wavelength of 488 nm was used as a source of coherent visible light. It was found that colloidal solutions of NPs of all used metals increased (26–39%) the growth characteristics of L. edodes, while irradiation of the fungus inoculum with laser light in a medium with NPs reduced the growth activity of the L. edodes mycelium. The addition of all NPs to the nutrient medium with the inoculum inhibited the synthesis of extracellular polysaccharides, the greatest effect was observed with Fe NPs. At the same time, laser light irradiation in the presence of NPs increased the amount of extracellular polysaccharides; the greatest effect was observed in photoinduced Mg NPs, which stimulated the synthesis of extracellular polysaccharides by 47%. The introduction of NPs into the inoculum reduced the amount of intracellular polysaccharides in the mycelial mass; the greatest inhibitory effect of 50% was observed for Ag NPs. At for the photoinduced NPs, they stimulated the synthesis of intracellular polysaccharides in the mycelial mass of L. edodes. Treatment of the inoculum in a medium with NPs and photoinduced NPs caused an intensification of the synthesis of phenolic compounds in the mycelial mass and an increase in radical scavenging activity (RSA). The highest RSA values were recorded for samples obtained from inoculum treatment with photoinduced Fe and Mg NPs, respectively, for methanol and ethanol extracts of mycelial mass. The obtained results suggest the possibility of complex use of colloidal solutions of Fe, Ag, and Mg NPs and low-intensity laser radiation as environmentally friendly factors regulating biosynthetic activity in biotechnology of cultivating the valuable medicinal fungus L. edodes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-120

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Goltsev, M. Bondarovych, Y. Gaevska, N. Babenko, T. Dubrava, M. Ostankov, The role of reactive oxygen species in the implementation of the anti-tumor effect of nanocomplexes based on GdEuVO4 nanoparticles and cholesterol, Innov. Biosyst. Bioeng. 8 (2) (2024) 28-37.

DOI: 10.20535/ibb.2024.8.2.295581

Google Scholar

[2] S. Yadav, S. Chander, A. Gupta, N. Kataria, K.Sh. Khoo, Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: Comparative optimization, simulation modeling, and isotherms, Bioengineered 15 (1) (2024) 2325721 (1-20).

DOI: 10.1080/21655979.2024.2325721

Google Scholar

[3] S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine, Molecules 25 (1) (2019) 112 (1-15).

DOI: 10.3390/molecules25010112

Google Scholar

[4] A. Lateef, O.M. Darwesh, I.A. Matter, Microbial nanobiotechnology: The melting pot of microbiology, microbial technology and nanotechnology, in: A. Lateef, E.B. Gueguim–Kana, N. Dasgupta, S. Ranjan (Eds.), Microbial Nanobiotechnology, Springer Nature, Singapore, 2021, https://doi.org/10.1007/978-981-33-4777-9_1 (1-19).

DOI: 10.1007/978-981-33-4777-9_1

Google Scholar

[5] A. Verma, F. Stellacci, Effect of surface properties on nanoparticle–cell interactions, Small 6 (1) (2010) 12-21.

Google Scholar

[6] D.S. Dhanjal, P. Mehra, S. Bhardwaj, R. Singh, P. Sharma, E. Nepovimova, C. Chopra, K. Kuca, Mycology-nanotechnology interface: Applications in medicine and cosmetology, Int. J. Nanomed. 17 (2022) 2505-2533.

DOI: 10.2147/ijn.s363282

Google Scholar

[7] E.A. Adebayo, M.A. Azeez, M.B. Alao, M.A. Oke, D.A. Aina, Mushroom nanobiotechnology: Concepts, developments and potentials, in: A. Lateef, E.B. Gueguim–Kana, N. Dasgupta, S. Ranjan (Eds.), Microbial Nanobiotechnology. Materials Horizons: From Nature to Nanomaterials, Springer, Singapore, 2021, pp.257-285.

DOI: 10.1007/978-981-33-4777-9_9

Google Scholar

[8] N.A. Tijani, J. Hokello, K.O. Awojobi, R. Marnadu, M. Shkir, Z. Ahmad, A.O. Afolabi, S.A. Adewinbi, I.A. Adebayo, Recent advances in mushroom-mediated nanoparticles: A critical review of mushroom biology, nanoparticles synthesis, types, characteristics and applications, J. Drug Deliv. Sci. Technol. 96 (9) (2024) 105695 (1-20).

DOI: 10.1016/j.jddst.2024.105695

Google Scholar

[9] A. Dziwulska–Hunek, M. Kachel, M. Gagos, M. Szymanek, Influence of silver nanoparticles, laser light and electromagnetic stimulation of seeds on germination rate and photosynthetic parameters in pumpkin (Cucurbita pepo L.) leaves, Appl. Sci. 11 (6) (2021) 2780 (1-16).

DOI: 10.3390/app11062780

Google Scholar

[10] M. Hassan, Sh.A. Shaaban, R.A. El Ziat, Kh.A. Khaled, Laser-induced changes in the gene expression, growth and development of Gladiolus grandiflorus cv. "White Prosperity", Sci. Rep. 14 (1) (2024) 6257 (1-20).

DOI: 10.1038/s41598-024-56430-6

Google Scholar

[11] P.S. Swathy, K.R. Kiran, M.B. Joshi, K.K. Mahato, A. Muthusamy, He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal, Sci. Rep. 11 (1) (2021) 7948 (1-16).

DOI: 10.1038/s41598-021-86984-8

Google Scholar

[12] O.B. Mykchaylova, N. L. Poyedinok, Photoregulation of the biosynthetic activity of Laricifomes officinalis using colloidal solutions of metal nanoparticles and laser irradiation, Biotechnol. Acta 17 (3) (2024) 66-77.

DOI: 10.15407/biotech17.03.066

Google Scholar

[13] N. Poyedinok, O. Mykchaylova, N. Sergiichuk, T. Tugay, A. Tugay, S. Lopatko, N. Matvieieva, Effect of colloidal metal nanoparticles on biomass, polysaccharides, flavonoids, and melanin accumulation in medicinal mushroom Inonotus obliquus (Ach.: Pers.) Pilat, Appl. Biochem. Biotechnol. 191 (3) (2020) 1315-1325.

DOI: 10.1007/s12010-020-03281-2

Google Scholar

[14] E. Damaso Jr., R. M. Dulay, S. Kalaw, R. Reyes, Effects of color light emitting diode (LED) on the mycelial growth, fruiting body production, and antioxidant activity of Lentinus tigrinus, CLSU Int. J. Sci. Technol. 3 (2) (2018) 9-16.

DOI: 10.22137/ijst.2018.v3n2.02

Google Scholar

[15] M.I.W. Halabura, K.V. Avelino, N.L. Araujo, A.S.S. Kassem, F.A.V. Seixas, L. Barros, A. Fernandes, A. Liberal, M. Ivanov, M. Sokovic, G.A. Linde, N.B. Colauto, J.S. do Valle, Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass, Photochem. Photobiol. Sci. 22 (3) (2023) 669-686.

DOI: 10.1007/s43630-022-00344-7

Google Scholar

[16] N.L. Poyedinok, Use of artificial light in mushroom cultivation, Biotechnol. Acta 6 (6) (2013) 58-70.

Google Scholar

[17] O. Mykchaylova, H. Dubova, A. Negriyko, M. Lomberg, V. Krasinko, A. Gregory, N. Poyedinok, Photoregulation of the biosynthetic activity of the edible medicinal mushroom Lentinula edodes in vitro, Photochem. Photobiol. Sci. 23 (3) (2024) 435-449.

DOI: 10.1007/s43630-023-00529-8

Google Scholar

[18] O. Mykchaylova, H. Dubova, M. Lomberg, A. Negriyko, N. Poyedinok, Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro, Arch. Biol. Sci. 75 (4) (2023) 489-501.

DOI: 10.2298/abs230821040m

Google Scholar

[19] N. Poyedinok, O.B. Mykchaylova, N. Tugay, A. Tugay, A. Negriyko, I. Dudka, Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.: Pers.) Pilat, Appl. Biochem. Biotechnol. 176 (2) (2015) 333-343.

DOI: 10.1007/s12010-015-1577-3

Google Scholar

[20] P.S. Bisen, R.K. Baghel, B.S. Sanodiya, G.S. Thakur, G.B.K.S. Prasad, Lentinus edodes: A macrofungus with pharmacological activities, Curr. Med. Chem. 17 (22) (2010) 2419-2430.

DOI: 10.2174/092986710791698495

Google Scholar

[21] X. Xu, H. Yan, J. Tang, J. Chen, X. Zhang, Polysaccharides in Lentinus edodes: Isolation, structure, immunomodulating activity and future prospective, Crit. Rev. Food Sci. Nutr. 54 (4) (2014) 474-487.

DOI: 10.1080/10408398.2011.587616

Google Scholar

[22] K. Sheng, C. Wang, B. Chen, M. Kang, M. Wang, K. Liu, M. Wang, Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities, Food Chem. 358 (2021) 129883 (1-14).

DOI: 10.1016/j.foodchem.2021.129883

Google Scholar

[23] A. Kumar, R. Paliwal, A. Gulbake, Lentinan: An unexplored novel biomaterial in drug and gene delivery applications, J. Controlled Release 356 (2023) 316-336.

DOI: 10.1016/j.jconrel.2023.02.034

Google Scholar

[24] Y. Zhang, Sh. Li, X. Wang, L. Zhang, P.C.K. Cheung, Advances in lentinan: Isolation, structure, chain conformation and bioactivities, Food Hydrocoll. 25 (2) (2011) 196-206.

DOI: 10.1016/j.foodhyd.2010.02.001

Google Scholar

[25] Y. Zhang, M. Zhang, Y. Jiang, X. Li, Y. He, P. Zeng, Zh. Guo, Y. Chang, H. Luo, Y. Liu, C. Hao, H. Wang, G. Zhang, L. Zhang, Lentinan as an immunotherapeutic for treating lung cancer: A review of 12 years clinical studies in China, J. Cancer Res. Clin. Oncol. 144 (11) (2018) 2177-2186.

DOI: 10.1007/s00432-018-2718-1

Google Scholar

[26] S. Chang, J. Buswell, Medicinal mushrooms: Past, present and future, Adv. Biochem. Eng. Biotechnol. 184 (2023) https://doi.org/10.1007/10_2021_197 (1-27).

Google Scholar

[27] A.S. Buchalo, O.B. Mykchaylova, M.L. Lomberg, S.P. Wasser, Microstructures of Vegetative Mycelium of Macromycetes in Pure Cultures, M.G. Kholodny Inst. Botany, Kyiv, 2009.

Google Scholar

[28] N. Bisko, K. Mustafin, G. Al-Maali, Z. Suleimenova, M. Lomberg, Z. Narmuratova, O. Mykchaylova, Effects of cultivation parameters on intracellular polysaccharide production in submerged culture of the edible medicinal mushroom Lentinula edodes, Czech Mycol. 72 (1) (2020) 1-17.

DOI: 10.33585/cmy.72101

Google Scholar

[29] O. Mykchaylova, M. Lomberg, N. Bisko, Verification and screening of biotechnologically valuable macromycetes species in vitro, in: Development of Modern Science: The Experience of European Countries and Prospects for Ukraine, Baltija Publ., Riga, 2019, pp.354-375.

DOI: 10.30525/978-9934-571-78-7_51

Google Scholar

[30] K.G. Lopatko, E.H. Aftandilyants, S.M. Kalenska, O.L. Tonkha, UA Patent # 38459 (2009).

Google Scholar

[31] R.A. Sergiienko, B. Ilkiv, S. Petrovska, K. Lopatko, S. Lopatko, K. Vinarchuk, Structure and properties of silicon nano- and microparticles obtained by electric-spark dispersion method, Mol. Cryst. Liquid Cryst. 752 (1) (2023) 112-127.

DOI: 10.1080/15421406.2022.2091278

Google Scholar

[32] K. Vynarchuk, K.G. Lopatko, Effect of nanoparticles on morphological parameters of wheat, Mol. Cryst. Liquid Cryst. 768 (14) (2024) 701-717.

DOI: 10.1080/15421406.2024.2358730

Google Scholar

[33] N. Poyedinok, A. Buchalo, A. Negriyko, J. Potemkina, O. Mykchaylova, The action of argon and helium–neon laser radiation on growth and fructification of culinary-medicinal mushrooms Pleurotus ostreatus (Jacq.: Fr.) Kumm., Lentinus edodes (Berk.) Singer, and Hericium erinaceus (Bull.: Fr.) Pers., Int. J. Med. Mushrooms 5 (3) (2003) 293-299.

DOI: 10.1615/interjmedicmush.v5.i3.70

Google Scholar

[34] O.B. Mykchaylova, A.M. Negriyko, O.Ya. Bespalova, N.L. Poyedinok, Influence of low-intensity light on the biosynthetic activity of the medicinal macromycete Laricifomes officinalis (Fomitopsidaceae, Polyporales) in vitro, Biotechnol. Acta 17 (1) (2024) 43-54.

DOI: 10.15407/biotech17.01.043

Google Scholar

[35] M. Raseta, M. Popovic, P. Knezevic, F. Sibul, S. Kaisarevic, M. Karaman, Bioactive phenolic compounds of two medicinal mushroom species Trametes versicolor and Stereum subtomentosum as antioxidant and antiproliferative agents, Chem. Biodivers. 17 (12) (2020) e2000683 (1-15).

DOI: 10.1002/cbdv.202000683

Google Scholar

[36] S.T. Thul, B.K. Sarangi, R. Avatar Pandey, Nanotechnology in agroecosystem: Implications on plant productivity and its soil environment, Expert Opin. Environ. Biol. 2 (1) (2013) http://dx.doi.org/10.4172/2325-9655.1000101 (1-7).

DOI: 10.4172/2325-9655.1000101

Google Scholar

[37] M. Thwala, S.J. Klaine, N. Musee, Interactions of metal‐based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge, Environ. Toxicol. Chem. 35 (7) (2016) 1677-1694.

DOI: 10.1002/etc.3364

Google Scholar

[38] C.C. Philpott, S. Leidgens, A.G. Frey, Metabolic remodeling in iron-deficient fungi, Biochim. Biophys. Acta 1823 (2012) 1509-1520.

DOI: 10.1016/j.bbamcr.2012.01.012

Google Scholar

[39] H.J. Kim, O. Khalimonchuk, P.M. Smith, D.R. Winge, Structure, function, and assembly of heme centers in mitochondrial respiratory complexes, Biochim. Biophys. Acta 1823 (9) (2012) 1604-1616.

DOI: 10.1016/j.bbamcr.2012.04.008

Google Scholar

[40] V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati, Surface plasmon resonance in gold nanoparticles: A review, J. Phys. Condens. Matter 29 (2017) 203002 (1-48).

DOI: 10.1088/1361-648x/aa60f3

Google Scholar

[41] N.J. de Mol, M.J.E. Fischer, Surface plasmon resonance: A general introduction, Meth. Mol. Biol. 627 (2010) http://dx.doi.org/10.1007/978-1-60761-670-2_1 (1-14).

Google Scholar

[42] H. Matsui, Surface plasmons in oxide semiconductor nanoparticles: Effect of size and carrier density, in: B. Movahedi (Ed.), Nanocrystalline Materials, IntechOpen, 2020, http://dx.doi.org/10.5772/intechopen.86999 (1-17).

DOI: 10.5772/intechopen.86999

Google Scholar

[43] Y.-Ch. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, B.-J. Li, Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet, Light Sci. Appl. 5 (12) (2016) e16176-e16176.

DOI: 10.1038/lsa.2016.176

Google Scholar

[44] U. Nobbmann, A. Morfesis, Light scattering and nanoparticles, Mater. Today 12 (5) (2009) 52-54.

DOI: 10.1016/s1369-7021(09)70164-6

Google Scholar

[45] J.R. Lakowicz, Y. Fu, Modification of single molecule fluorescence near metallic nanostructures, Laser Photon Rev. 3 (1/2) (2009) 221-232.

DOI: 10.1002/lpor.200810035

Google Scholar

[46] D.O. Plutenko, M.V. Vasnetsov, Scattering of the radial polarized beams on the metal spherical particle: Plasmonic nanojet formation, Front. Phys. 9 (2021) 727525 (1-10).

DOI: 10.3389/fphy.2021.727525

Google Scholar

[47] L.K. Sorensen, A.D. Utyushev, V.I. Zakomirnui, V.S. Gerasimov, A.E. Ershov, E.P. Polyutov, S.V. Karpov, H. Agren. Plasmonic enhancement of local fields in ultrafine metal nanoparticles, J. Phys. Chem. C 125 (2021) 13900-13908.

DOI: 10.1021/acs.jpcc.1c01424

Google Scholar

[48] A. Gelle, A. Moores, Plasmonic nanoparticles: Photocatalysts with a bright future, Curr. Opin. Green Sustain. Chem. 15 (2019) 60-66.

Google Scholar

[49] S.M. Zakharchenko, N.A. Shydlovska, A.O. Perekos, K.G. Lopatko, O.S. Savluk, Features of obtaining of plasma-erosion nanodispersed silver hydrosols and their bactericidal and fungicidal properties, Metallofiz. Noveishie Tekhnol. 42 (6) (2020) 829-851.

DOI: 10.15407/mfint.42.06.0829

Google Scholar

[50] R. Behra, L. Sigg, M.J. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri–Fink, B. Rothen–Rutishauser, Bioavailability of silver nanoparticles and ions: From a chemical and biochemical perspective, J. R. Soc. Interface 10 (87) (2013) 20130396 (1-16).

DOI: 10.1098/rsif.2013.0396

Google Scholar

[51] P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal. 24 (5) (2012) 981-990.

DOI: 10.1016/j.cellsig.2012.01.008

Google Scholar

[52] V.I. Lushchak, Free radicals, reactive oxygen species, oxidative stress and its classification, Chem. Biol. Interact. 224 (2014) 164-175.

DOI: 10.1016/j.cbi.2014.10.016

Google Scholar

[53] M. Kozarski, A. Klaus, D. Jakovljevic, N. Todorovic, J. Vunduk, P. Petrovic, M. Niksic, M.M. Vrvic, L. van Griensven, Antioxidants of edible mushrooms, Molecules 20 (10) (2015) 19489-19525.

DOI: 10.3390/molecules201019489

Google Scholar

[54] M.S. Brewer, Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications, Compr. Rev. Food Sci. Food Saf. 10 (4) (2011) 221-247.

DOI: 10.1111/j.1541-4337.2011.00156.x

Google Scholar

[55] J. Panda, A.K. Mishra, P.C. Nath, S. Mahanta, M. Sharma, P.K. Nayak, Y.K. Mohanta, K. Sridhar, Wild edible mushrooms to achieve sustainable development goals: Novel sources for food security, health, and well-being, Food Biosci. 60 (9) (2024) 104277 (1-15).

DOI: 10.1016/j.fbio.2024.104277

Google Scholar