[1]
A. Goltsev, M. Bondarovych, Y. Gaevska, N. Babenko, T. Dubrava, M. Ostankov, The role of reactive oxygen species in the implementation of the anti-tumor effect of nanocomplexes based on GdEuVO4 nanoparticles and cholesterol, Innov. Biosyst. Bioeng. 8 (2) (2024) 28-37.
DOI: 10.20535/ibb.2024.8.2.295581
Google Scholar
[2]
S. Yadav, S. Chander, A. Gupta, N. Kataria, K.Sh. Khoo, Biogenic engineered zinc oxide nanoparticle for sulfur black dye removal from contaminated wastewater: Comparative optimization, simulation modeling, and isotherms, Bioengineered 15 (1) (2024) 2325721 (1-20).
DOI: 10.1080/21655979.2024.2325721
Google Scholar
[3]
S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio, The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine, Molecules 25 (1) (2019) 112 (1-15).
DOI: 10.3390/molecules25010112
Google Scholar
[4]
A. Lateef, O.M. Darwesh, I.A. Matter, Microbial nanobiotechnology: The melting pot of microbiology, microbial technology and nanotechnology, in: A. Lateef, E.B. Gueguim–Kana, N. Dasgupta, S. Ranjan (Eds.), Microbial Nanobiotechnology, Springer Nature, Singapore, 2021, https://doi.org/10.1007/978-981-33-4777-9_1 (1-19).
DOI: 10.1007/978-981-33-4777-9_1
Google Scholar
[5]
A. Verma, F. Stellacci, Effect of surface properties on nanoparticle–cell interactions, Small 6 (1) (2010) 12-21.
Google Scholar
[6]
D.S. Dhanjal, P. Mehra, S. Bhardwaj, R. Singh, P. Sharma, E. Nepovimova, C. Chopra, K. Kuca, Mycology-nanotechnology interface: Applications in medicine and cosmetology, Int. J. Nanomed. 17 (2022) 2505-2533.
DOI: 10.2147/ijn.s363282
Google Scholar
[7]
E.A. Adebayo, M.A. Azeez, M.B. Alao, M.A. Oke, D.A. Aina, Mushroom nanobiotechnology: Concepts, developments and potentials, in: A. Lateef, E.B. Gueguim–Kana, N. Dasgupta, S. Ranjan (Eds.), Microbial Nanobiotechnology. Materials Horizons: From Nature to Nanomaterials, Springer, Singapore, 2021, pp.257-285.
DOI: 10.1007/978-981-33-4777-9_9
Google Scholar
[8]
N.A. Tijani, J. Hokello, K.O. Awojobi, R. Marnadu, M. Shkir, Z. Ahmad, A.O. Afolabi, S.A. Adewinbi, I.A. Adebayo, Recent advances in mushroom-mediated nanoparticles: A critical review of mushroom biology, nanoparticles synthesis, types, characteristics and applications, J. Drug Deliv. Sci. Technol. 96 (9) (2024) 105695 (1-20).
DOI: 10.1016/j.jddst.2024.105695
Google Scholar
[9]
A. Dziwulska–Hunek, M. Kachel, M. Gagos, M. Szymanek, Influence of silver nanoparticles, laser light and electromagnetic stimulation of seeds on germination rate and photosynthetic parameters in pumpkin (Cucurbita pepo L.) leaves, Appl. Sci. 11 (6) (2021) 2780 (1-16).
DOI: 10.3390/app11062780
Google Scholar
[10]
M. Hassan, Sh.A. Shaaban, R.A. El Ziat, Kh.A. Khaled, Laser-induced changes in the gene expression, growth and development of Gladiolus grandiflorus cv. "White Prosperity", Sci. Rep. 14 (1) (2024) 6257 (1-20).
DOI: 10.1038/s41598-024-56430-6
Google Scholar
[11]
P.S. Swathy, K.R. Kiran, M.B. Joshi, K.K. Mahato, A. Muthusamy, He–Ne laser accelerates seed germination by modulating growth hormones and reprogramming metabolism in brinjal, Sci. Rep. 11 (1) (2021) 7948 (1-16).
DOI: 10.1038/s41598-021-86984-8
Google Scholar
[12]
O.B. Mykchaylova, N. L. Poyedinok, Photoregulation of the biosynthetic activity of Laricifomes officinalis using colloidal solutions of metal nanoparticles and laser irradiation, Biotechnol. Acta 17 (3) (2024) 66-77.
DOI: 10.15407/biotech17.03.066
Google Scholar
[13]
N. Poyedinok, O. Mykchaylova, N. Sergiichuk, T. Tugay, A. Tugay, S. Lopatko, N. Matvieieva, Effect of colloidal metal nanoparticles on biomass, polysaccharides, flavonoids, and melanin accumulation in medicinal mushroom Inonotus obliquus (Ach.: Pers.) Pilat, Appl. Biochem. Biotechnol. 191 (3) (2020) 1315-1325.
DOI: 10.1007/s12010-020-03281-2
Google Scholar
[14]
E. Damaso Jr., R. M. Dulay, S. Kalaw, R. Reyes, Effects of color light emitting diode (LED) on the mycelial growth, fruiting body production, and antioxidant activity of Lentinus tigrinus, CLSU Int. J. Sci. Technol. 3 (2) (2018) 9-16.
DOI: 10.22137/ijst.2018.v3n2.02
Google Scholar
[15]
M.I.W. Halabura, K.V. Avelino, N.L. Araujo, A.S.S. Kassem, F.A.V. Seixas, L. Barros, A. Fernandes, A. Liberal, M. Ivanov, M. Sokovic, G.A. Linde, N.B. Colauto, J.S. do Valle, Light conditions affect the growth, chemical composition, antioxidant and antimicrobial activities of the white-rot fungus Lentinus crinitus mycelial biomass, Photochem. Photobiol. Sci. 22 (3) (2023) 669-686.
DOI: 10.1007/s43630-022-00344-7
Google Scholar
[16]
N.L. Poyedinok, Use of artificial light in mushroom cultivation, Biotechnol. Acta 6 (6) (2013) 58-70.
Google Scholar
[17]
O. Mykchaylova, H. Dubova, A. Negriyko, M. Lomberg, V. Krasinko, A. Gregory, N. Poyedinok, Photoregulation of the biosynthetic activity of the edible medicinal mushroom Lentinula edodes in vitro, Photochem. Photobiol. Sci. 23 (3) (2024) 435-449.
DOI: 10.1007/s43630-023-00529-8
Google Scholar
[18]
O. Mykchaylova, H. Dubova, M. Lomberg, A. Negriyko, N. Poyedinok, Influence of low-intensity light on the biosynthetic activity of the edible medicinal mushroom Hericium erinaceus (Bull.: Fr.) Pers. in vitro, Arch. Biol. Sci. 75 (4) (2023) 489-501.
DOI: 10.2298/abs230821040m
Google Scholar
[19]
N. Poyedinok, O.B. Mykchaylova, N. Tugay, A. Tugay, A. Negriyko, I. Dudka, Effect of light wavelengths and coherence on growth, enzymes activity, and melanin accumulation of liquid-cultured Inonotus obliquus (Ach.: Pers.) Pilat, Appl. Biochem. Biotechnol. 176 (2) (2015) 333-343.
DOI: 10.1007/s12010-015-1577-3
Google Scholar
[20]
P.S. Bisen, R.K. Baghel, B.S. Sanodiya, G.S. Thakur, G.B.K.S. Prasad, Lentinus edodes: A macrofungus with pharmacological activities, Curr. Med. Chem. 17 (22) (2010) 2419-2430.
DOI: 10.2174/092986710791698495
Google Scholar
[21]
X. Xu, H. Yan, J. Tang, J. Chen, X. Zhang, Polysaccharides in Lentinus edodes: Isolation, structure, immunomodulating activity and future prospective, Crit. Rev. Food Sci. Nutr. 54 (4) (2014) 474-487.
DOI: 10.1080/10408398.2011.587616
Google Scholar
[22]
K. Sheng, C. Wang, B. Chen, M. Kang, M. Wang, K. Liu, M. Wang, Recent advances in polysaccharides from Lentinus edodes (Berk.): Isolation, structures and bioactivities, Food Chem. 358 (2021) 129883 (1-14).
DOI: 10.1016/j.foodchem.2021.129883
Google Scholar
[23]
A. Kumar, R. Paliwal, A. Gulbake, Lentinan: An unexplored novel biomaterial in drug and gene delivery applications, J. Controlled Release 356 (2023) 316-336.
DOI: 10.1016/j.jconrel.2023.02.034
Google Scholar
[24]
Y. Zhang, Sh. Li, X. Wang, L. Zhang, P.C.K. Cheung, Advances in lentinan: Isolation, structure, chain conformation and bioactivities, Food Hydrocoll. 25 (2) (2011) 196-206.
DOI: 10.1016/j.foodhyd.2010.02.001
Google Scholar
[25]
Y. Zhang, M. Zhang, Y. Jiang, X. Li, Y. He, P. Zeng, Zh. Guo, Y. Chang, H. Luo, Y. Liu, C. Hao, H. Wang, G. Zhang, L. Zhang, Lentinan as an immunotherapeutic for treating lung cancer: A review of 12 years clinical studies in China, J. Cancer Res. Clin. Oncol. 144 (11) (2018) 2177-2186.
DOI: 10.1007/s00432-018-2718-1
Google Scholar
[26]
S. Chang, J. Buswell, Medicinal mushrooms: Past, present and future, Adv. Biochem. Eng. Biotechnol. 184 (2023) https://doi.org/10.1007/10_2021_197 (1-27).
Google Scholar
[27]
A.S. Buchalo, O.B. Mykchaylova, M.L. Lomberg, S.P. Wasser, Microstructures of Vegetative Mycelium of Macromycetes in Pure Cultures, M.G. Kholodny Inst. Botany, Kyiv, 2009.
Google Scholar
[28]
N. Bisko, K. Mustafin, G. Al-Maali, Z. Suleimenova, M. Lomberg, Z. Narmuratova, O. Mykchaylova, Effects of cultivation parameters on intracellular polysaccharide production in submerged culture of the edible medicinal mushroom Lentinula edodes, Czech Mycol. 72 (1) (2020) 1-17.
DOI: 10.33585/cmy.72101
Google Scholar
[29]
O. Mykchaylova, M. Lomberg, N. Bisko, Verification and screening of biotechnologically valuable macromycetes species in vitro, in: Development of Modern Science: The Experience of European Countries and Prospects for Ukraine, Baltija Publ., Riga, 2019, pp.354-375.
DOI: 10.30525/978-9934-571-78-7_51
Google Scholar
[30]
K.G. Lopatko, E.H. Aftandilyants, S.M. Kalenska, O.L. Tonkha, UA Patent # 38459 (2009).
Google Scholar
[31]
R.A. Sergiienko, B. Ilkiv, S. Petrovska, K. Lopatko, S. Lopatko, K. Vinarchuk, Structure and properties of silicon nano- and microparticles obtained by electric-spark dispersion method, Mol. Cryst. Liquid Cryst. 752 (1) (2023) 112-127.
DOI: 10.1080/15421406.2022.2091278
Google Scholar
[32]
K. Vynarchuk, K.G. Lopatko, Effect of nanoparticles on morphological parameters of wheat, Mol. Cryst. Liquid Cryst. 768 (14) (2024) 701-717.
DOI: 10.1080/15421406.2024.2358730
Google Scholar
[33]
N. Poyedinok, A. Buchalo, A. Negriyko, J. Potemkina, O. Mykchaylova, The action of argon and helium–neon laser radiation on growth and fructification of culinary-medicinal mushrooms Pleurotus ostreatus (Jacq.: Fr.) Kumm., Lentinus edodes (Berk.) Singer, and Hericium erinaceus (Bull.: Fr.) Pers., Int. J. Med. Mushrooms 5 (3) (2003) 293-299.
DOI: 10.1615/interjmedicmush.v5.i3.70
Google Scholar
[34]
O.B. Mykchaylova, A.M. Negriyko, O.Ya. Bespalova, N.L. Poyedinok, Influence of low-intensity light on the biosynthetic activity of the medicinal macromycete Laricifomes officinalis (Fomitopsidaceae, Polyporales) in vitro, Biotechnol. Acta 17 (1) (2024) 43-54.
DOI: 10.15407/biotech17.01.043
Google Scholar
[35]
M. Raseta, M. Popovic, P. Knezevic, F. Sibul, S. Kaisarevic, M. Karaman, Bioactive phenolic compounds of two medicinal mushroom species Trametes versicolor and Stereum subtomentosum as antioxidant and antiproliferative agents, Chem. Biodivers. 17 (12) (2020) e2000683 (1-15).
DOI: 10.1002/cbdv.202000683
Google Scholar
[36]
S.T. Thul, B.K. Sarangi, R. Avatar Pandey, Nanotechnology in agroecosystem: Implications on plant productivity and its soil environment, Expert Opin. Environ. Biol. 2 (1) (2013) http://dx.doi.org/10.4172/2325-9655.1000101 (1-7).
DOI: 10.4172/2325-9655.1000101
Google Scholar
[37]
M. Thwala, S.J. Klaine, N. Musee, Interactions of metal‐based engineered nanoparticles with aquatic higher plants: A review of the state of current knowledge, Environ. Toxicol. Chem. 35 (7) (2016) 1677-1694.
DOI: 10.1002/etc.3364
Google Scholar
[38]
C.C. Philpott, S. Leidgens, A.G. Frey, Metabolic remodeling in iron-deficient fungi, Biochim. Biophys. Acta 1823 (2012) 1509-1520.
DOI: 10.1016/j.bbamcr.2012.01.012
Google Scholar
[39]
H.J. Kim, O. Khalimonchuk, P.M. Smith, D.R. Winge, Structure, function, and assembly of heme centers in mitochondrial respiratory complexes, Biochim. Biophys. Acta 1823 (9) (2012) 1604-1616.
DOI: 10.1016/j.bbamcr.2012.04.008
Google Scholar
[40]
V. Amendola, R. Pilot, M. Frasconi, O.M. Marago, M.A. Iati, Surface plasmon resonance in gold nanoparticles: A review, J. Phys. Condens. Matter 29 (2017) 203002 (1-48).
DOI: 10.1088/1361-648x/aa60f3
Google Scholar
[41]
N.J. de Mol, M.J.E. Fischer, Surface plasmon resonance: A general introduction, Meth. Mol. Biol. 627 (2010) http://dx.doi.org/10.1007/978-1-60761-670-2_1 (1-14).
Google Scholar
[42]
H. Matsui, Surface plasmons in oxide semiconductor nanoparticles: Effect of size and carrier density, in: B. Movahedi (Ed.), Nanocrystalline Materials, IntechOpen, 2020, http://dx.doi.org/10.5772/intechopen.86999 (1-17).
DOI: 10.5772/intechopen.86999
Google Scholar
[43]
Y.-Ch. Li, H.-B. Xin, H.-X. Lei, L.-L. Liu, Y.-Z. Li, Y. Zhang, B.-J. Li, Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet, Light Sci. Appl. 5 (12) (2016) e16176-e16176.
DOI: 10.1038/lsa.2016.176
Google Scholar
[44]
U. Nobbmann, A. Morfesis, Light scattering and nanoparticles, Mater. Today 12 (5) (2009) 52-54.
DOI: 10.1016/s1369-7021(09)70164-6
Google Scholar
[45]
J.R. Lakowicz, Y. Fu, Modification of single molecule fluorescence near metallic nanostructures, Laser Photon Rev. 3 (1/2) (2009) 221-232.
DOI: 10.1002/lpor.200810035
Google Scholar
[46]
D.O. Plutenko, M.V. Vasnetsov, Scattering of the radial polarized beams on the metal spherical particle: Plasmonic nanojet formation, Front. Phys. 9 (2021) 727525 (1-10).
DOI: 10.3389/fphy.2021.727525
Google Scholar
[47]
L.K. Sorensen, A.D. Utyushev, V.I. Zakomirnui, V.S. Gerasimov, A.E. Ershov, E.P. Polyutov, S.V. Karpov, H. Agren. Plasmonic enhancement of local fields in ultrafine metal nanoparticles, J. Phys. Chem. C 125 (2021) 13900-13908.
DOI: 10.1021/acs.jpcc.1c01424
Google Scholar
[48]
A. Gelle, A. Moores, Plasmonic nanoparticles: Photocatalysts with a bright future, Curr. Opin. Green Sustain. Chem. 15 (2019) 60-66.
Google Scholar
[49]
S.M. Zakharchenko, N.A. Shydlovska, A.O. Perekos, K.G. Lopatko, O.S. Savluk, Features of obtaining of plasma-erosion nanodispersed silver hydrosols and their bactericidal and fungicidal properties, Metallofiz. Noveishie Tekhnol. 42 (6) (2020) 829-851.
DOI: 10.15407/mfint.42.06.0829
Google Scholar
[50]
R. Behra, L. Sigg, M.J. Clift, F. Herzog, M. Minghetti, B. Johnston, A. Petri–Fink, B. Rothen–Rutishauser, Bioavailability of silver nanoparticles and ions: From a chemical and biochemical perspective, J. R. Soc. Interface 10 (87) (2013) 20130396 (1-16).
DOI: 10.1098/rsif.2013.0396
Google Scholar
[51]
P.D. Ray, B.-W. Huang, Y. Tsuji, Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling, Cell. Signal. 24 (5) (2012) 981-990.
DOI: 10.1016/j.cellsig.2012.01.008
Google Scholar
[52]
V.I. Lushchak, Free radicals, reactive oxygen species, oxidative stress and its classification, Chem. Biol. Interact. 224 (2014) 164-175.
DOI: 10.1016/j.cbi.2014.10.016
Google Scholar
[53]
M. Kozarski, A. Klaus, D. Jakovljevic, N. Todorovic, J. Vunduk, P. Petrovic, M. Niksic, M.M. Vrvic, L. van Griensven, Antioxidants of edible mushrooms, Molecules 20 (10) (2015) 19489-19525.
DOI: 10.3390/molecules201019489
Google Scholar
[54]
M.S. Brewer, Natural antioxidants: Sources, compounds, mechanisms of action, and potential applications, Compr. Rev. Food Sci. Food Saf. 10 (4) (2011) 221-247.
DOI: 10.1111/j.1541-4337.2011.00156.x
Google Scholar
[55]
J. Panda, A.K. Mishra, P.C. Nath, S. Mahanta, M. Sharma, P.K. Nayak, Y.K. Mohanta, K. Sridhar, Wild edible mushrooms to achieve sustainable development goals: Novel sources for food security, health, and well-being, Food Biosci. 60 (9) (2024) 104277 (1-15).
DOI: 10.1016/j.fbio.2024.104277
Google Scholar