Comparative Study of PAMAM G4NH2-Ag and G4OH-Ag Nanocomposites on Arthrospira platensis after Various Conditions

Article Preview

Abstract:

The purpose of this study is to investigate the effect of PAMAM G4NH2-Ag and G4OH-Ag nanocomposits on algae (cyanobacterium) Arthrospira platensis (spirulina) as a model at various conditions using UV-visible spectroscopy. It is known that the efficiency of energy production in photosynthetic microorganisms is partly determined by light absorption. In our case, we observed an increase in absorption in the region corresponding to chlorophyll a under various conditions when PAMAM G4NH2-Ag and PAMAM G4OH-Ag nanocomposits were added to spirulina. From these data, we may conclude that the photoactivity of chlorophyll a in spirulina is enhanced through the action of PAMAM G4NH2-Ag and PAMAM G4OH-Ag nanocomposits in vivo. This effect persisted regardless of dendrimer type, spirulina fermentation, freezing at different temperatures, or high-dose irradiation followed by re-cultivation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

89-96

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Sethi, H. Jonwal, R. Parihar, Nanoparticles in cancer treatment: A review, J. Anal. Pharm. Res. 12 (2) (2023) 88-93.

Google Scholar

[2] Sh. Hosny, L.Z. Mohamed, M.S. Ragab, Q.K. Alomoush, E.M. Abdalla, S.A. Aly, Nanomaterials in biomedical applications: opportunities and challenges – A review, Chem. Pap. 2025 (2025).

DOI: 10.1007/s11696-025-03937-5

Google Scholar

[3] P.A. Tran, D. Hocking, A.J. O'Connor, Facile in situ synthesis and impregnation of silver nanoparticles in a hydrophobic polymer for antimicrobial biomaterials, Adv. Sci. Technol. 96 (2014)

Google Scholar

[4] S. Vijayaram, H. Razafindralambo, Y.‑Zh. Sun, S. Vasantharaj, H. Ghafarifarsani, S.H. Hoseinifar, M. Raeeszadeh, Applications of green synthesized metal nanoparticles – A review, Biol. Trace Element Res. 202 (2024) 360-386.

DOI: 10.1007/s12011-023-03645-9

Google Scholar

[5] X. Geng, R. Qu, X. Kong, Sh. Geng, Y. Zhang, Ch. Sun, Ch. Ji, Facile synthesis of cross-linked hyperbranched polyamidoamines dendrimers for efficient Hg(Ⅱ) removal from water, Front. Chem. 9 (2021) 743429 (1-14).

DOI: 10.3389/fchem.2021.743429

Google Scholar

[6] M. Pawlaczyk, G. Schroeder, Adsorption studies of Cu (II) ions on dendrimer-grafted silica-based materials, J. Mol. Liquids 281 (2019) 176-185.

DOI: 10.1016/j.molliq.2019.02.043

Google Scholar

[7] J.F. Kukowska–Latallo, K.A. Candido, Zh. Cao, Sh.S. Nigavekar, I.J. Majoros, Th.P. Thomas, L.P. Balogh, M.K. Khan, J.R. Baker Jr., Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer Res. 65 (12) (2005), 5317-5334.

DOI: 10.1158/0008-5472.can-04-3921

Google Scholar

[8] Ch.U. Herborn, J. Barkhausen, I. Paetsch, P. Hunold, M. Mahler, K. Shamsi, E. Nagel, Coronary Arteries: Contrast-enhanced MR imaging with SH L 643A – Experience in 12 volunteers, Radiology 229 (2003) 217-223.

DOI: 10.1148/radiol.2291021033

Google Scholar

[9] H. Viltres, Y.C. Lopez, C. Leyva, N.K. Gupta, A.G. Naranjo, P. Acevedo–Pena, A. Sanchez–Diaz, J. Bae, K.S. Kim, Polyamidoamine dendrimer-based materials for environmental applications: A review, J. Mol. Liquids 334 (2021) 116017 (1-24).

DOI: 10.1016/j.molliq.2021.116017

Google Scholar

[10] A. Thakur, P. Thakur, S.M. Paul Khurana (Eds.), Synthesis and Applications of Nanoparticles, first ed., Springer Nature, Singapore, 2022.

Google Scholar

[11] B. Sarkar, A. Sonawane (Eds.), Biological Applications of Nanoparticles, Springer Nature, Singapore, 2023.

Google Scholar

[12] I. Moreno–Garrido, S. Perez, J. Blasco, Toxicity of silver and gold nanoparticles on marine microalgae, Marine Environ. Res. 111 (2015) 60-73.

DOI: 10.1016/j.marenvres.2015.05.008

Google Scholar

[13] A.A. Golubev, A.Y. Prilepskii, L.A. Dykman, N.G. Khlebtsov, V.A. Bogatyrev, Colorimetric evaluation of the viability of the microalga Dunaliella salina as a test tool for nanomaterial toxicity, Tox. Sci. Adv. 151 (2016) 115-125.

DOI: 10.1093/toxsci/kfw023

Google Scholar

[14] W.F. Falco, A.M. Queiroz, J. Fernandes, E.R. Botero, E.A. Falcao, F.E.G. Guimaraes, J.-C. M'Peko, S.L. Oliveira, I. Colbeck, A.R.L. Caires, Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching, J. Photochem. Photobiol. A 299 (2015) 203-209.

DOI: 10.1016/j.jphotochem.2014.12.001

Google Scholar

[15] D. Zhong, D. Zhang, T. Xie, M. Zhou, Biodegradable microalgae-based carriers for targeted delivery and imaging-guided therapy toward lung metastasis of breast cancer, Small 16 (2020) 2000819 (1-10).

DOI: 10.1002/smll.202000819

Google Scholar

[16] S. Sahil, S. Bodh, P. Verma, Spirulina platensis: A comprehensive review of its nutritional value, antioxidant activity and functional food potential, J. Cellular Biotechnol. 10 (2) (2024) 159-172.

DOI: 10.3233/jcb-240151

Google Scholar

[17] T. Kalabegishvili, I. Murusidze, E. Kirkesali, A. Rcheulishvili, E. Ginturi, Kuchava, N. Bagdavadze, E. Gelagutashvili, M.V. Frontasyeva, I. Zinicovscaia, S.S. Pavlov, A.Y. Dmitriev, Gold and silver nanoparticles in Spirulina platensis biomass for medical applications, Ecol. Chem. Eng. 20 (4) (2013) 621-631.

DOI: 10.2478/eces-2013-0043

Google Scholar

[18] J. Monaselidze, E. Gelagutashvili, M. Gogebashvili, M. Gorgoshidze, A. Gongadze, N. Bagdavadze, E. Kiziria, Survival and growth of Spirulina platensis cells and thermodynamic stability of their main proteins after recultivation following irradiation with 137Cs γ doses of 0 to 400 kGy, Algal Res. 15 (2022) 102900 (1-5).

DOI: 10.1016/j.algal.2022.102900

Google Scholar

[19] C. Zarrouk, Contribution to the Study of a Cyanophycea: Influence of Various Physical and Chemical Factors on the Growth and Photosynthesis of Spirulina maxima (PhD Thesis), Univ. Paris, Paris, 1966.

Google Scholar

[20] A. Patel, S. Mishra, R. Pawar, P.K. Ghosh, Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat, 40 (2) (2005) 248-255.

DOI: 10.1016/j.pep.2004.10.028

Google Scholar

[21] D.C. Fork, P. Mohanty, Fluorescence and other characteristics of blue-green algae (Cyanobacteria), red algae, and Cryptomonads, in: Light Emission by Plants and Bacteria, A.J. Govindjee, D.C. Fork (Eds.), Acad. Press, Orlando, 1986, pp.451-496.

DOI: 10.1016/b978-0-12-294310-2.50022-6

Google Scholar

[22] Silver Nanoparticles: Optical Properties – The Effect of Size on Optical Properties, NanoComposix: https://nanocomposix.com/pages/silver-nanoparticles-optical-properties.

Google Scholar

[23] L. Campanella, G. Crescentinil, P. Avino, A. Moaur, Determination of macrominerals and trace elements in the alga Spirulina platensis, Analusis 26 (5) (1998) 210-214.

DOI: 10.1051/analusis:1998136

Google Scholar

[24] V. Rizzi, J. Gubitosa, P. Fini, A. Fraix, S. Sortino, A. Agostiano, P. Cosma, Development of Spirulina sea-weed raw extract / polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a, Mater. Sci. Eng. C 119 (2021) 111593 (1-11).

DOI: 10.1016/j.msec.2020.111593

Google Scholar