[1]
S. Sethi, H. Jonwal, R. Parihar, Nanoparticles in cancer treatment: A review, J. Anal. Pharm. Res. 12 (2) (2023) 88-93.
Google Scholar
[2]
Sh. Hosny, L.Z. Mohamed, M.S. Ragab, Q.K. Alomoush, E.M. Abdalla, S.A. Aly, Nanomaterials in biomedical applications: opportunities and challenges – A review, Chem. Pap. 2025 (2025).
DOI: 10.1007/s11696-025-03937-5
Google Scholar
[3]
P.A. Tran, D. Hocking, A.J. O'Connor, Facile in situ synthesis and impregnation of silver nanoparticles in a hydrophobic polymer for antimicrobial biomaterials, Adv. Sci. Technol. 96 (2014)
Google Scholar
[4]
S. Vijayaram, H. Razafindralambo, Y.‑Zh. Sun, S. Vasantharaj, H. Ghafarifarsani, S.H. Hoseinifar, M. Raeeszadeh, Applications of green synthesized metal nanoparticles – A review, Biol. Trace Element Res. 202 (2024) 360-386.
DOI: 10.1007/s12011-023-03645-9
Google Scholar
[5]
X. Geng, R. Qu, X. Kong, Sh. Geng, Y. Zhang, Ch. Sun, Ch. Ji, Facile synthesis of cross-linked hyperbranched polyamidoamines dendrimers for efficient Hg(Ⅱ) removal from water, Front. Chem. 9 (2021) 743429 (1-14).
DOI: 10.3389/fchem.2021.743429
Google Scholar
[6]
M. Pawlaczyk, G. Schroeder, Adsorption studies of Cu (II) ions on dendrimer-grafted silica-based materials, J. Mol. Liquids 281 (2019) 176-185.
DOI: 10.1016/j.molliq.2019.02.043
Google Scholar
[7]
J.F. Kukowska–Latallo, K.A. Candido, Zh. Cao, Sh.S. Nigavekar, I.J. Majoros, Th.P. Thomas, L.P. Balogh, M.K. Khan, J.R. Baker Jr., Nanoparticle targeting of anticancer drug improves therapeutic response in animal model of human epithelial cancer, Cancer Res. 65 (12) (2005), 5317-5334.
DOI: 10.1158/0008-5472.can-04-3921
Google Scholar
[8]
Ch.U. Herborn, J. Barkhausen, I. Paetsch, P. Hunold, M. Mahler, K. Shamsi, E. Nagel, Coronary Arteries: Contrast-enhanced MR imaging with SH L 643A – Experience in 12 volunteers, Radiology 229 (2003) 217-223.
DOI: 10.1148/radiol.2291021033
Google Scholar
[9]
H. Viltres, Y.C. Lopez, C. Leyva, N.K. Gupta, A.G. Naranjo, P. Acevedo–Pena, A. Sanchez–Diaz, J. Bae, K.S. Kim, Polyamidoamine dendrimer-based materials for environmental applications: A review, J. Mol. Liquids 334 (2021) 116017 (1-24).
DOI: 10.1016/j.molliq.2021.116017
Google Scholar
[10]
A. Thakur, P. Thakur, S.M. Paul Khurana (Eds.), Synthesis and Applications of Nanoparticles, first ed., Springer Nature, Singapore, 2022.
Google Scholar
[11]
B. Sarkar, A. Sonawane (Eds.), Biological Applications of Nanoparticles, Springer Nature, Singapore, 2023.
Google Scholar
[12]
I. Moreno–Garrido, S. Perez, J. Blasco, Toxicity of silver and gold nanoparticles on marine microalgae, Marine Environ. Res. 111 (2015) 60-73.
DOI: 10.1016/j.marenvres.2015.05.008
Google Scholar
[13]
A.A. Golubev, A.Y. Prilepskii, L.A. Dykman, N.G. Khlebtsov, V.A. Bogatyrev, Colorimetric evaluation of the viability of the microalga Dunaliella salina as a test tool for nanomaterial toxicity, Tox. Sci. Adv. 151 (2016) 115-125.
DOI: 10.1093/toxsci/kfw023
Google Scholar
[14]
W.F. Falco, A.M. Queiroz, J. Fernandes, E.R. Botero, E.A. Falcao, F.E.G. Guimaraes, J.-C. M'Peko, S.L. Oliveira, I. Colbeck, A.R.L. Caires, Interaction between chlorophyll and silver nanoparticles: A close analysis of chlorophyll fluorescence quenching, J. Photochem. Photobiol. A 299 (2015) 203-209.
DOI: 10.1016/j.jphotochem.2014.12.001
Google Scholar
[15]
D. Zhong, D. Zhang, T. Xie, M. Zhou, Biodegradable microalgae-based carriers for targeted delivery and imaging-guided therapy toward lung metastasis of breast cancer, Small 16 (2020) 2000819 (1-10).
DOI: 10.1002/smll.202000819
Google Scholar
[16]
S. Sahil, S. Bodh, P. Verma, Spirulina platensis: A comprehensive review of its nutritional value, antioxidant activity and functional food potential, J. Cellular Biotechnol. 10 (2) (2024) 159-172.
DOI: 10.3233/jcb-240151
Google Scholar
[17]
T. Kalabegishvili, I. Murusidze, E. Kirkesali, A. Rcheulishvili, E. Ginturi, Kuchava, N. Bagdavadze, E. Gelagutashvili, M.V. Frontasyeva, I. Zinicovscaia, S.S. Pavlov, A.Y. Dmitriev, Gold and silver nanoparticles in Spirulina platensis biomass for medical applications, Ecol. Chem. Eng. 20 (4) (2013) 621-631.
DOI: 10.2478/eces-2013-0043
Google Scholar
[18]
J. Monaselidze, E. Gelagutashvili, M. Gogebashvili, M. Gorgoshidze, A. Gongadze, N. Bagdavadze, E. Kiziria, Survival and growth of Spirulina platensis cells and thermodynamic stability of their main proteins after recultivation following irradiation with 137Cs γ doses of 0 to 400 kGy, Algal Res. 15 (2022) 102900 (1-5).
DOI: 10.1016/j.algal.2022.102900
Google Scholar
[19]
C. Zarrouk, Contribution to the Study of a Cyanophycea: Influence of Various Physical and Chemical Factors on the Growth and Photosynthesis of Spirulina maxima (PhD Thesis), Univ. Paris, Paris, 1966.
Google Scholar
[20]
A. Patel, S. Mishra, R. Pawar, P.K. Ghosh, Purification and characterization of C-Phycocyanin from cyanobacterial species of marine and freshwater habitat, 40 (2) (2005) 248-255.
DOI: 10.1016/j.pep.2004.10.028
Google Scholar
[21]
D.C. Fork, P. Mohanty, Fluorescence and other characteristics of blue-green algae (Cyanobacteria), red algae, and Cryptomonads, in: Light Emission by Plants and Bacteria, A.J. Govindjee, D.C. Fork (Eds.), Acad. Press, Orlando, 1986, pp.451-496.
DOI: 10.1016/b978-0-12-294310-2.50022-6
Google Scholar
[22]
Silver Nanoparticles: Optical Properties – The Effect of Size on Optical Properties, NanoComposix: https://nanocomposix.com/pages/silver-nanoparticles-optical-properties.
Google Scholar
[23]
L. Campanella, G. Crescentinil, P. Avino, A. Moaur, Determination of macrominerals and trace elements in the alga Spirulina platensis, Analusis 26 (5) (1998) 210-214.
DOI: 10.1051/analusis:1998136
Google Scholar
[24]
V. Rizzi, J. Gubitosa, P. Fini, A. Fraix, S. Sortino, A. Agostiano, P. Cosma, Development of Spirulina sea-weed raw extract / polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a, Mater. Sci. Eng. C 119 (2021) 111593 (1-11).
DOI: 10.1016/j.msec.2020.111593
Google Scholar