[1]
E.Y. Lukianova–Hleb, D.S. Wagner, M.K. Brenner, D.O. Lapotko, Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles, Biomater. 33 (21) (2012) 5441-5450.
DOI: 10.1016/j.biomaterials.2012.03.077
Google Scholar
[2]
X. Shi, D. Lu, Z. Wang, D. Zhang, W. Gao, Ch. Zhang, J. Deng, Sh. Guo, Colorimetric and visual determination of acrylamide via acrylamide-mediated polymerization of acrylamide-functionalized gold nanoparticles, Microchim. Acta 185 (11) (2018) 522 (1-9).
DOI: 10.1007/s00604-018-3062-5
Google Scholar
[3]
D. Hartono, Y.K.L. Hody, L.Y. Yung, The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes, Biomater. 31 (11) (2010) 3008-3015.
DOI: 10.1016/j.biomaterials.2010.01.003
Google Scholar
[4]
K.F. Tan, L.Y. Chia, M.A.A. Maki, Sh.-Ch. Cheah, L.L.A. In, P.V. Kumar, Gold nanocomposites in colorectal cancer therapy: Characterization, selective cytotoxicity, and migration inhibition, Naunyn–Schmiedeberg's Arch. Pharmacol. 2025 (2025).
DOI: 10.1007/s00210-025-03839-z
Google Scholar
[5]
L. Wang, S. Li, J. Yin, J. Yang, Q. Li, W. Zheng, Sh. Liu, X. Jiang, The density of surface coating can contribute to different antibacterial activities of gold nanoparticles, Nano Lett. 20 (7) (2020) 5036-5042.
DOI: 10.1021/acs.nanolett.0c01196
Google Scholar
[6]
P.P.P. Kumar, D.K. Lim, Gold–polymer nanocomposites for future therapeutic and tissue engineering applications, Pharmaceutics 14 (1) (2021) 70 (1-29).
DOI: 10.3390/pharmaceutics14010070
Google Scholar
[7]
R.C. Alves, F.B. Pimentel, H.P.A. Nouws, R.C.B. Marques, M.B. Gonzalez–Garcia, M.B.P.P. Oliveira, C. Delerue–Matos, Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor, Biosens. Bioelectron. 64 (19) (2015) 19-24.
DOI: 10.1016/j.bios.2014.08.026
Google Scholar
[8]
S.K. Khadheer Pasha, K. Deshmukh, Ch.M. Hussain (Eds.), Gold Nanoparticles, Nanomaterials and Nanocomposites, Elsevier, Amsterdam, 2024.
Google Scholar
[9]
M.A.R. Khan, M.Sh. Al Mamun, M.A. Habib, A.B.M.N. Islam, Md. Mahiuddin, K.M.R. Karim, J. Naime, P. Saha, Sh.K. Dey, M.H. Ara, A review on gold nanoparticles: Biological synthesis, characterizations, and analytical applications, Results Chem. 4 (2022) 100478 (1-19).
DOI: 10.1016/j.rechem.2022.100478
Google Scholar
[10]
N. Zuverza–Mena, R. Armendariz, J.R. Peralta–Videa, J.L. Gardea–Torresdey, Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value, Front. Plant Sci. 7 (2016) 90 (1-11).
DOI: 10.3389/fpls.2016.00090
Google Scholar
[11]
D.W. Rains, Plant tissue and protoplast culture: Applications to stress physiology and biochemistry, in: Plants under Stress, H.G. Jones, T.J. Flowers, M.B. Jones (Eds.), Cambridge Univ. Press, Cambridge, 2008, pp.181-196.
DOI: 10.1017/cbo9780511661587.011
Google Scholar
[12]
Z. Ferdous, A. Nemmar, Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure, Int. J. Mol. Sci. 21 (7) (2020) 2375 (1-31).
DOI: 10.3390/ijms21072375
Google Scholar
[13]
A. Vonshak, Use of Spirulina biomass, in: Spirulina platensis (Arthrospira) Physiology Filament Biology and Biotechnology, A. Vonshak (Ed.), Taylor & Francis, London, 2002, pp.159-173.
DOI: 10.1023/a:1012498515734
Google Scholar
[14]
A. Belay, Spirulina (Arthrospira) production and quality assurance, in: Spirulina in Human Nutrition and Health, E. Gershwin, A. Belay (Eds.), CRC Press, Boca Raton, 2008, pp.1-23.
DOI: 10.1201/9781420052572.ch1
Google Scholar
[15]
T. Kalabegishvili, I. Murusidze, E. Kirkesali, A. Rcheulishvili, E. Ginturi, Kuchava, N. Bagdavadze, E. Gelagutashvili, M.V. Frontasyeva, I. Zinicovscaia, S.S. Pavlov, A.Y. Dmitriev, Gold and silver nanoparticles in Spirulina platensis biomass for medical applications, Ecol. Chem. Eng. 20 (4) (2013) 621-631.
DOI: 10.2478/eces-2013-0043
Google Scholar
[16]
E. Gelagutashvili, Binding of heavy metals with C-phycocyanin: A comparison between equilibrium dialysis, fluorescence and absorption titration, American J. Biomed. Life Sci. 1 (1), (2013) 12-16.
DOI: 10.11648/j.ajbls.20130101.13
Google Scholar
[17]
J. Monaselidze, E. Gelagutashvili, N. Bagdavadze, A. Gongadze, M. Gogebashvili, N. Ivanishvili, M. Gorgoshidze, Effect of γ-irradiation on stability of cyanobacteria Spirulina platensis intact cells, J. Pharm. Appl. Chem. 5 (2) (2019) 75-80.
DOI: 10.1016/j.algal.2022.102900
Google Scholar
[18]
S. Mumtaz, R. Nadeem, R.A. Sarfraz, M. Shahid, Mechanism study of green synthesis and antibacterial attribute of Polyalthia longifolia based gold nanoparticles, J. Nano Res. 75 (2022) 1-16.
DOI: 10.4028/p-k39913
Google Scholar
[19]
V. Mishra, U. Gupta, N.K. Jain, Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes, Pharmazie 65 (12) (2010) 891-895.
Google Scholar
[20]
V. Rizzi, J. Gubitosa, P. Fini, A. Fraix, S. Sortino, A. Agostiano, P. Cosma, Development of spirulina sea-weed raw extract / polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a, Mater. Sci. Eng. C 119 (2021) 111593 (1-11).
DOI: 10.1016/j.msec.2020.111593
Google Scholar
[21]
C. Zarrouk, Contribution to the Study of a Cyanophycea: Influence of Various Physical and Chemical Factors on the Growth and Photosynthesis of Spirulina maxima (PhD Thesis), Univ. Paris, Paris, 1966.
Google Scholar
[22]
A. Bennett, L. Bogorad, Complementary chromatic adaptation in a filamentous blue-green alga, J. Cell Biol. 58 (2) (1973) 419-435.
DOI: 10.1083/jcb.58.2.419
Google Scholar
[23]
P.Kondzior, A. Butarewicz, Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris, J. Ecol. Eng. 19 (3) (2018) 18-28.
DOI: 10.12911/22998993/85375
Google Scholar
[24]
D.C. Fork, P. Mohanty, Fluorescence and other characteristics of blue-green algae (Cyanobacteria), red algae, and Cryptomonads, in: Light Emission by Plants and Bacteria, A.J. Govindjee, D.C. Fork (Eds.), Acad. Press, Orlando, 1986, pp.451-496.
DOI: 10.1016/b978-0-12-294310-2.50022-6
Google Scholar
[25]
L.E. Paramonov, Estimation of chlorophyll content by absorption spectra of native Spirulina platensis cells, Iss. Mod. Algology 22 (1) (2020) 25-33.
DOI: 10.33624/2311-0147-2020-1(22)-25-33
Google Scholar
[26]
S. Barazzouk, L. Bekale, S. Hotchandani, Enhanced photostability of chlorophyll-a using gold nanoparticles as an efficient photoprotector, J. Mater. Chem. 22 (2012) 25316-25324.
DOI: 10.1039/c2jm33681b
Google Scholar
[27]
S. Barazzouk, P.V. Kamat, S. Hotchandani, Photoinduced electron transfer between chlorophyll a and gold nanoparticles, J. Phys. Chem. B 109 (2005) 716-723.
DOI: 10.1021/jp046474s
Google Scholar
[28]
K. Kuruvinashetti, Sh. Pakkiriswami, M. Packirisamy, Gold nanoparticle interaction in algae enhancing quantum efficiency and power generation in microphotosynthetic power cells, Adv. Energy Sustain. Res. 3 (2022) 2100135 (1-20).
DOI: 10.1002/aesr.202100135
Google Scholar
[29]
M.D. Ooms, C.T. Dinh, E.H. Sargent, D. Sinton, Photon management for augmented photosynthesis. Nat. Commun. 7 (1) (2016)12699 (1-13).
DOI: 10.1038/ncomms12699
Google Scholar
[30]
M. Mouhib, A. Antonucci, M. Reggente, A. Amirjani, A.J. Gillen, A. Boghossian, Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials, Nano Res. 12 (2019) 2184 (1-16).
DOI: 10.1007/s12274-019-2438-0
Google Scholar