Influence of G4 Poly(Amidoamine)-Gold Nanocomposites on Arthrospira platensis

Article Preview

Abstract:

The influence of G4 poly(amidoamine) dendrimers or PAMAM–gold nanocomposites (G4NH2–Au, G4NH2 PAMAM dendrimer ethilenediamine core, generation 4). (NH2)64 on Arthrospira platensis was studied under various conditions. Our findings demonstrate that these gold nanocomposites interact with both chlorophyll a and proteins in the cyanobacterium. Notably, the interaction between chlorophyll a and PAMAM G4NH2–Au nanocomposites persisted despite exposure to various factors, including temperature changes and high doses of irradiation. PAMAM–Au nanocomposites were found to enhance the natural functionality of the photosynthetic microorganism Arthrospira platensis and remained effective under diverse conditions. This enhancement is likely due to the increased light absorption potential resulting from the incorporation of nanocomposites into the microorganism’s cellular constituents.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

97-104

Citation:

Online since:

October 2025

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2025 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.Y. Lukianova–Hleb, D.S. Wagner, M.K. Brenner, D.O. Lapotko, Cell-specific transmembrane injection of molecular cargo with gold nanoparticle-generated transient plasmonic nanobubbles, Biomater. 33 (21) (2012) 5441-5450.

DOI: 10.1016/j.biomaterials.2012.03.077

Google Scholar

[2] X. Shi, D. Lu, Z. Wang, D. Zhang, W. Gao, Ch. Zhang, J. Deng, Sh. Guo, Colorimetric and visual determination of acrylamide via acrylamide-mediated polymerization of acrylamide-functionalized gold nanoparticles, Microchim. Acta 185 (11) (2018) 522 (1-9).

DOI: 10.1007/s00604-018-3062-5

Google Scholar

[3] D. Hartono, Y.K.L. Hody, L.Y. Yung, The effect of cholesterol on protein-coated gold nanoparticle binding to liquid crystal-supported models of cell membranes, Biomater. 31 (11) (2010) 3008-3015.

DOI: 10.1016/j.biomaterials.2010.01.003

Google Scholar

[4] K.F. Tan, L.Y. Chia, M.A.A. Maki, Sh.-Ch. Cheah, L.L.A. In, P.V. Kumar, Gold nanocomposites in colorectal cancer therapy: Characterization, selective cytotoxicity, and migration inhibition, Naunyn–Schmiedeberg's Arch. Pharmacol. 2025 (2025).

DOI: 10.1007/s00210-025-03839-z

Google Scholar

[5] L. Wang, S. Li, J. Yin, J. Yang, Q. Li, W. Zheng, Sh. Liu, X. Jiang, The density of surface coating can contribute to different antibacterial activities of gold nanoparticles, Nano Lett. 20 (7) (2020) 5036-5042.

DOI: 10.1021/acs.nanolett.0c01196

Google Scholar

[6] P.P.P. Kumar, D.K. Lim, Gold–polymer nanocomposites for future therapeutic and tissue engineering applications, Pharmaceutics 14 (1) (2021) 70 (1-29).

DOI: 10.3390/pharmaceutics14010070

Google Scholar

[7] R.C. Alves, F.B. Pimentel, H.P.A. Nouws, R.C.B. Marques, M.B. Gonzalez–Garcia, M.B.P.P. Oliveira, C. Delerue–Matos, Detection of Ara h 1 (a major peanut allergen) in food using an electrochemical gold nanoparticle-coated screen-printed immunosensor, Biosens. Bioelectron. 64 (19) (2015) 19-24.

DOI: 10.1016/j.bios.2014.08.026

Google Scholar

[8] S.K. Khadheer Pasha, K. Deshmukh, Ch.M. Hussain (Eds.), Gold Nanoparticles, Nanomaterials and Nanocomposites, Elsevier, Amsterdam, 2024.

Google Scholar

[9] M.A.R. Khan, M.Sh. Al Mamun, M.A. Habib, A.B.M.N. Islam, Md. Mahiuddin, K.M.R. Karim, J. Naime, P. Saha, Sh.K. Dey, M.H. Ara, A review on gold nanoparticles: Biological synthesis, characterizations, and analytical applications, Results Chem. 4 (2022) 100478 (1-19).

DOI: 10.1016/j.rechem.2022.100478

Google Scholar

[10] N. Zuverza–Mena, R. Armendariz, J.R. Peralta–Videa, J.L. Gardea–Torresdey, Effects of silver nanoparticles on radish sprouts: Root growth reduction and modifications in the nutritional value, Front. Plant Sci. 7 (2016) 90 (1-11).

DOI: 10.3389/fpls.2016.00090

Google Scholar

[11] D.W. Rains, Plant tissue and protoplast culture: Applications to stress physiology and biochemistry, in: Plants under Stress, H.G. Jones, T.J. Flowers, M.B. Jones (Eds.), Cambridge Univ. Press, Cambridge, 2008, pp.181-196.

DOI: 10.1017/cbo9780511661587.011

Google Scholar

[12] Z. Ferdous, A. Nemmar, Health impact of silver nanoparticles: A review of the biodistribution and toxicity following various routes of exposure, Int. J. Mol. Sci. 21 (7) (2020) 2375 (1-31).

DOI: 10.3390/ijms21072375

Google Scholar

[13] A. Vonshak, Use of Spirulina biomass, in: Spirulina platensis (Arthrospira) Physiology Filament Biology and Biotechnology, A. Vonshak (Ed.), Taylor & Francis, London, 2002, pp.159-173.

DOI: 10.1023/a:1012498515734

Google Scholar

[14] A. Belay, Spirulina (Arthrospira) production and quality assurance, in: Spirulina in Human Nutrition and Health, E. Gershwin, A. Belay (Eds.), CRC Press, Boca Raton, 2008, pp.1-23.

DOI: 10.1201/9781420052572.ch1

Google Scholar

[15] T. Kalabegishvili, I. Murusidze, E. Kirkesali, A. Rcheulishvili, E. Ginturi, Kuchava, N. Bagdavadze, E. Gelagutashvili, M.V. Frontasyeva, I. Zinicovscaia, S.S. Pavlov, A.Y. Dmitriev, Gold and silver nanoparticles in Spirulina platensis biomass for medical applications, Ecol. Chem. Eng. 20 (4) (2013) 621-631.

DOI: 10.2478/eces-2013-0043

Google Scholar

[16] E. Gelagutashvili, Binding of heavy metals with C-phycocyanin: A comparison between equilibrium dialysis, fluorescence and absorption titration, American J. Biomed. Life Sci. 1 (1), (2013) 12-16.

DOI: 10.11648/j.ajbls.20130101.13

Google Scholar

[17] J. Monaselidze, E. Gelagutashvili, N. Bagdavadze, A. Gongadze, M. Gogebashvili, N. Ivanishvili, M. Gorgoshidze, Effect of γ-irradiation on stability of cyanobacteria Spirulina platensis intact cells, J. Pharm. Appl. Chem. 5 (2) (2019) 75-80.

DOI: 10.1016/j.algal.2022.102900

Google Scholar

[18] S. Mumtaz, R. Nadeem, R.A. Sarfraz, M. Shahid, Mechanism study of green synthesis and antibacterial attribute of Polyalthia longifolia based gold nanoparticles, J. Nano Res. 75 (2022) 1-16.

DOI: 10.4028/p-k39913

Google Scholar

[19] V. Mishra, U. Gupta, N.K. Jain, Influence of different generations of poly(propylene imine) dendrimers on human erythrocytes, Pharmazie 65 (12) (2010) 891-895.

Google Scholar

[20] V. Rizzi, J. Gubitosa, P. Fini, A. Fraix, S. Sortino, A. Agostiano, P. Cosma, Development of spirulina sea-weed raw extract / polyamidoamine hydrogel system as novel platform in photodynamic therapy: Photostability and photoactivity of chlorophyll a, Mater. Sci. Eng. C 119 (2021) 111593 (1-11).

DOI: 10.1016/j.msec.2020.111593

Google Scholar

[21] C. Zarrouk, Contribution to the Study of a Cyanophycea: Influence of Various Physical and Chemical Factors on the Growth and Photosynthesis of Spirulina maxima (PhD Thesis), Univ. Paris, Paris, 1966.

Google Scholar

[22] A. Bennett, L. Bogorad, Complementary chromatic adaptation in a filamentous blue-green alga, J. Cell Biol. 58 (2) (1973) 419-435.

DOI: 10.1083/jcb.58.2.419

Google Scholar

[23] P.Kondzior, A. Butarewicz, Effect of heavy metals (Cu and Zn) on the content of photosynthetic pigments in the cells of algae Chlorella vulgaris, J. Ecol. Eng. 19 (3) (2018) 18-28.

DOI: 10.12911/22998993/85375

Google Scholar

[24] D.C. Fork, P. Mohanty, Fluorescence and other characteristics of blue-green algae (Cyanobacteria), red algae, and Cryptomonads, in: Light Emission by Plants and Bacteria, A.J. Govindjee, D.C. Fork (Eds.), Acad. Press, Orlando, 1986, pp.451-496.

DOI: 10.1016/b978-0-12-294310-2.50022-6

Google Scholar

[25] L.E. Paramonov, Estimation of chlorophyll content by absorption spectra of native Spirulina platensis cells, Iss. Mod. Algology 22 (1) (2020) 25-33.

DOI: 10.33624/2311-0147-2020-1(22)-25-33

Google Scholar

[26] S. Barazzouk, L. Bekale, S. Hotchandani, Enhanced photostability of chlorophyll-a using gold nanoparticles as an efficient photoprotector, J. Mater. Chem. 22 (2012) 25316-25324.

DOI: 10.1039/c2jm33681b

Google Scholar

[27] S. Barazzouk, P.V. Kamat, S. Hotchandani, Photoinduced electron transfer between chlorophyll a and gold nanoparticles, J. Phys. Chem. B 109 (2005) 716-723.

DOI: 10.1021/jp046474s

Google Scholar

[28] K. Kuruvinashetti, Sh. Pakkiriswami, M. Packirisamy, Gold nanoparticle interaction in algae enhancing quantum efficiency and power generation in microphotosynthetic power cells, Adv. Energy Sustain. Res. 3 (2022) 2100135 (1-20).

DOI: 10.1002/aesr.202100135

Google Scholar

[29] M.D. Ooms, C.T. Dinh, E.H. Sargent, D. Sinton, Photon management for augmented photosynthesis. Nat. Commun. 7 (1) (2016)12699 (1-13).

DOI: 10.1038/ncomms12699

Google Scholar

[30] M. Mouhib, A. Antonucci, M. Reggente, A. Amirjani, A.J. Gillen, A. Boghossian, Enhancing bioelectricity generation in microbial fuel cells and biophotovoltaics using nanomaterials, Nano Res. 12 (2019) 2184 (1-16).

DOI: 10.1007/s12274-019-2438-0

Google Scholar