[1]
Patel and Jani (2020) developed an artificial neural network model to predict weld bead characteristics during GMAW of nitrogen-strengthened austenitic stainless steel.
DOI: 10.1063/1.5117936
Google Scholar
[2]
Singh et al. (2020) investigated the weld bead geometry and process parameter optimization in GMAW using statistical modeling and artificial intelligence techniques.
Google Scholar
[3]
Ahmed (2005) compiled advanced developments in welding technology, covering novel processes, materials, and automation strategies relevant to modern manufacturing.
DOI: 10.1533/9781845690892
Google Scholar
[4]
Tseng, K.H., Chen, K.L. (2012). Comparisons between TiO2 and SiO2 flux assisted TIG welding processes. Journal of Nanoscience and Nanotechnology, 12: 6359-6367
DOI: 10.1166/jnn.2012.6419
Google Scholar
[5]
Ahmadi E, Ibrahim A.R. "The effect of activating fluxes on 316L stainless steel weld joint characteristic in TIG welding using the Taguchi method"
Google Scholar
[6]
Chern TS, Tseng KH, Tsai HL (2011) "Study of the characteristics of duplex stainless steel activated tungsten inert gas welds." 255-63.
DOI: 10.1016/j.matdes.2010.05.056
Google Scholar
[7]
Chuang K-J (2012) "Application of iron-based powders in tungsten inert gas welding for 17Cr–10Ni–2Mo alloys" Powder Technology 228 36–46
DOI: 10.1016/j.powtec.2012.04.047
Google Scholar
[8]
Harikannan N, Magudeeswaran G, Nair S.R, Sundar. (2014) "Optimization of process parameters of the activated tungsten inert gas welding for aspect ratio of UNS S32205 duplex stainless steel welds" Defence Technology xx 1-10.
DOI: 10.1016/j.dt.2014.06.006
Google Scholar
[9]
Ming X., Qin X., Zhang Y., Fu B., Zou Z (2014) "High speed TIG–MAG hybrid arc welding of mild steel plate" Journal of Materials Processing Technology 214 2417–2424
DOI: 10.1016/j.jmatprotec.2014.05.020
Google Scholar
[10]
Nogi K, Fujii H, Sato T, Lu SP (2008) "Development of an advanced A- TIG (AA-TIG) welding method by control of Marangoni convection." Mater Sci Eng a; 495(1-2):296-303.
DOI: 10.1016/j.msea.2007.10.116
Google Scholar
[11]
Tsai HL (2011) "Study of the characteristics of duplex stainless steel activated tungsten inert gas welds. 255-63.
DOI: 10.1016/j.matdes.2010.05.056
Google Scholar
[12]
Tseng K.H (2012) "Application of iron-based powders in tungsten inert gas welding for 17Cr–10Ni–2Mo alloys" Powder Technology 228 36–46
DOI: 10.1016/j.powtec.2012.04.047
Google Scholar
[13]
Vasudevan M (2012), Vasantharaja P (2011) Studies on A-TIG welding of Low Activation Ferritic/Martensitic (LAFM) steel" Journal of Nuclear Materials 421 117–123
DOI: 10.1016/j.jnucmat.2011.11.062
Google Scholar
[14]
Vishvesh J. Badheka, Sanjay G. Nayeen (2014)."Effect of oxide-based fluxes on mechanical and metallurgical properties of Dissimilar Activating Flux Assisted-Tungsten Inert Gas Welds" Journal of Manufacturing Processes 137–143.
DOI: 10.1016/j.jmapro.2013.11.001
Google Scholar
[15]
Silva et al. (2023) investigated TIG welding on Al alloys using activated fluxes and reported significant penetration improvement.
DOI: 10.1590/1980-5373-MR-2023-0495
Google Scholar
[16]
Gnanasekaran et al. (2022) explored the microstructure of TIG welds on high-strength aluminum using TiO₂ flux.
DOI: 10.1590/1980-5373-MR-2022-0365
Google Scholar
[17]
Li et al. (2024) studied arc behavior and Marangoni effect in flux-assisted aluminum welds DOI.:.
DOI: 10.1088/2053-1591/ad5cdc
Google Scholar
[18]
Reddy et al. (2024) demonstrated optimization of A-TIG welding parameters for aerospace-grade Al alloys.
DOI: 10.1007/978-981-97-7071-7_34
Google Scholar