[1]
Zhao Y, Yan Y, Shen T, Yang Y, Zhao Y, Shang H, Zhang B and Wang D 2024 Robust degradation of tetracycline hydrochloride by electro-assisted activation of peroxymonosulfate over porous cobalt-manganese oxide nanowire array in situ grown on nickel foam J. Environ. Chem. Eng. 12 114662
DOI: 10.1016/j.jece.2024.114662
Google Scholar
[2]
Wang P, Li D, Wang L, Guo S, Zhao Y, Shang H, Wang D and Zhang B 2024 Ultrafine CoNi alloy nanoparticles anchored on surface-roughened halloysite nanotubes for highly efficient catalytic hydrogenation of 4-nitrophenol Chem. Eng. J. 495 153631
DOI: 10.1016/j.cej.2024.153631
Google Scholar
[3]
Wang P, Wang L, Zhao Y, Zhang B and Wang D 2024 Progress in Degradation of Volatile Organic Compounds by Catalytic Oxidation: a Review Based on the Kinds of Active Components of Catalysts Water. Air. Soil Pollut. 235 7
DOI: 10.1007/s11270-023-06802-x
Google Scholar
[4]
Wang D, Zhang H, Ren M, Fan Y, Gao Y, Lv Z Y, Yu Y and Chen J 2020 Electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran over composite copper and iron chlorides and oxides in combustion flue gas Chemosphere 256 127065
DOI: 10.1016/j.chemosphere.2020.127065
Google Scholar
[5]
Zhou J, Feng X, Zhao Y, Cui R, Wang D and Zhang B 2022 Noble-metal-free CuNi/Co3O4 hybrid nanosheets as efficient and magnetically recyclable catalysts for hydrolysis of ammonia borane J. Alloys Compd. 923 166345
DOI: 10.1016/j.jallcom.2022.166345
Google Scholar
[6]
Wang D, Zhang H, Fan Y, Cao R, Gao Y and Chen J 2020 Synergistic effect of mixed Cu and Fe oxides and chlorides on electrophilic chlorination of dibenzo-p-dioxin and dibenzofuran Sci. Total Environ. 721 137563
DOI: 10.1016/j.scitotenv.2020.137563
Google Scholar
[7]
Wang D, Zhang H, Fan Y, Ren M, Cao R and Chen J 2019 Electrophilic Chlorination of Naphthalene in Combustion Flue Gas Environ. Sci. Technol. 53 5741–9
DOI: 10.1021/acs.est.9b00350
Google Scholar
[8]
Shi J, Boyer G, Mourzenko V and Thovert J-F 2023 A comprehensive numerical model for the pyrolysis of intumescent polymers: Application to EVA-ATH compounds Chem. Eng. Sci. 268 118385
DOI: 10.1016/j.ces.2022.118385
Google Scholar
[9]
Song C, Jin Y, Gu X and Shi J 2023 A solar-driven self-repairing sponge for efficient recovery of crude oil Colloids Surf. Physicochem. Eng. Asp. 658 130692
DOI: 10.1016/j.colsurfa.2022.130692
Google Scholar
[10]
Song C, Jiang Z, Gu X, Li H and Shi J 2022 A bilayer solar evaporator with all-in-one design for efficient seawater desalination J. Colloid Interface Sci. 616 709–19
DOI: 10.1016/j.jcis.2022.02.075
Google Scholar
[11]
Shi J, Boyer G, Mourzenko V and Thovert J-F 2020 Evolutive Models for the Geometry and Heat Conductivity of an Intumescent EVA-ATH Composite during Its Thermal Degradation Materials 13 5258
DOI: 10.3390/ma13225258
Google Scholar
[12]
J, Yang X, Du K, Guo Q and Bai Z 2025 Effects of structural parameters on the load distribution unevenness in CFRP hybrid bonded-bolted joint Polym. Compos. 46 4688–702
DOI: 10.1002/pc.29269
Google Scholar
[13]
Chi P, Sun J, Luo X, Cui R and Dong H 2023 Reconstruction of 3D digital rocks with controllable porosity using CVAE-GAN Geoenergy Sci. Eng. 230 212264
DOI: 10.1016/j.geoen.2023.212264
Google Scholar
[14]
Zhang T, Xia P and Lu F 2021 3D reconstruction of digital cores based on a model using generative adversarial networks and variational auto-encoders J. Pet. Sci. Eng. 207 109151
DOI: 10.1016/j.petrol.2021.109151
Google Scholar
[15]
Han W, Hou Y, Shi J, Meng L and Sapanathan T 2025 Experimental and numerical investigation on the mechanical behavior of 3D star-shaped auxetic structure Compos. Struct. 354 118803
DOI: 10.1016/j.compstruct.2024.118803
Google Scholar
[16]
Shi J, Yang X, Chen X, Du K, Li C and Yang Y 2024 Numerical and experimental investigation on the load-bearing performance of plain-woven composites hybrid bonded-bolted joints Polym. Compos. 45 1195–207
DOI: 10.1002/pc.27845
Google Scholar
[17]
Shams R, Masihi M, Boozarjomehry R B and Blunt M J 2020 Coupled generative adversarial and auto-encoder neural networks to reconstruct three-dimensional multi-scale porous media J. Pet. Sci. Eng. 186 106794
DOI: 10.1016/j.petrol.2019.106794
Google Scholar
[18]
Feng J, Teng Q, Li B, He X, Chen H and Li Y 2020 An end-to-end three-dimensional reconstruction framework of porous media from a single two-dimensional image based on deep learning Comput. Methods Appl. Mech. Eng.
DOI: 10.1016/j.cma.2020.113043
Google Scholar
[19]
Zhu J-Y, Zhang R, Pathak D, Darrell T, Efros A A, Wang O and Shechtman E 2018 Toward multimodal image-to-image translation
Google Scholar
[20]
Zhang F, He X, Teng Q, Wu X and Dong X 2022 3D-PMRNN: reconstructing three-dimensional porous media from the two-dimensional image with recurrent neural network J. Pet. Sci. Eng. 208 109652
DOI: 10.1016/j.petrol.2021.109652
Google Scholar
[21]
Volkhonskiy D, Muravleva E, Sudakov O, Orlov D, Belozerov B, Burnaev E and Koroteev D 2021 Reconstruction of 3D porous media from 2D slices
DOI: 10.1103/physreve.105.025304
Google Scholar
[22]
Chen D, Noda N-A, Takaki R and Sano Y 2020 Intensity of singular stress fields (ISSFs) in micro-bond test in comparison with ISSFs in pull-out test Int. J. Mech. Sci. 183 105817
DOI: 10.1016/j.ijmecsci.2020.105817
Google Scholar
[23]
Noda N-A, Chen D and Sano Y 2022 Reference solution and proportional method to calculate intensity of singular stress field (ISSF) at the interface corner where reinforced fiber enters resin matrix Mech. Adv. Mater. Struct. 29 2962–72
DOI: 10.1080/15376494.2021.1882624
Google Scholar
[24]
Noda N-A, Chen D, Zhang G and Sano Y 2020 Single-fiber pull-out analysis comparing the intensities of singular stress fields (ISSFs) at fiber end/entry points Int. J. Mech. Sci. 165 105196
DOI: 10.1016/j.ijmecsci.2019.105196
Google Scholar
[25]
Zhang K, Zhang X and Peng K 2025 Evaluating the process operating state taking into consideration operator interventions with application to a hot rolling mill process Control Eng. Pract. 155 106176
DOI: 10.1016/j.conengprac.2024.106176
Google Scholar
[26]
Yin Z, Tie Y, Duan Y, Li C and Chen D 2022 Impact damage assessment in patch-repaired carbon fiber-reinforced polymer laminates using the nonlinear Lamb wave-mixing technique Polym. Compos. 43 8152–69
DOI: 10.1002/pc.26984
Google Scholar
[27]
Hoang N Q, Kang S, Yoon H-K and Lee J-S 2024 Enhancing anomaly detection in ground-penetrating radar images through reconstruction loss and high-variability Results Eng. 21 101874
DOI: 10.1016/j.rineng.2024.101874
Google Scholar
[28]
Zhang X and Jiang L 2024 Conditional variational autoencoder with gaussian process regression recognition for parametric models J. Comput. Appl. Math. 438 115532
DOI: 10.1016/j.cam.2023.115532
Google Scholar
[29]
Bautista-Valhondo J and Alfaro-Pozo R 2020 Mixed integer linear programming models for Flow Shop Scheduling with a demand plan of job types Cent. Eur. J. Oper. Res. 28 5–23
DOI: 10.1007/s10100-018-0553-8
Google Scholar
[30]
Shi J, Boyer G, Mourzenko V and Thovert J-F 2018 On the influence of boundary conditions when determining transport coefficients from digital images of porous media 14émes Journées d'Etudes sur les Milieux Poreux (JEMP2018) (Nantes, France)
DOI: 10.1007/s11242-020-01404-1
Google Scholar
[31]
Zhu W, Chen D, Shi J, Zhang J, Zhao H and Li C 2024 Design and optimization of a temperature controller with low overshoot, fast respond and high COP based on water-source thermoelectric heat pump Appl. Therm. Eng. 242 122473
DOI: 10.1016/j.applthermaleng.2024.122473
Google Scholar
[32]
Cho Y-J 2024 Weighted intersection over union (wIoU) for evaluating image segmentation Pattern Recognit. Lett. 185 101–7
DOI: 10.1016/j.patrec.2024.07.011
Google Scholar
[33]
Wong Y M, Yeap P L, Ong A L K, Tuan J K L, Lew W S, Lee J C L and Tan H Q 2024 Machine learning prediction of dice similarity coefficient for validation of deformable image registration Intell.-Based Med. 10 100163
DOI: 10.1016/j.ibmed.2024.100163
Google Scholar
[34]
Cui K, Song G, Wang W, Liu H, Yang Y, Sun C, Zhao Z, Lin H and Chen D 2024 Force analysis and distribution evolution of Fe3O4 nanoparticles in magnetic fluids Chin. J. Phys. 88 982–90
DOI: 10.1016/j.cjph.2024.02.037
Google Scholar