p.49
p.59
p.71
p.79
p.95
p.125
p.153
p.163
p.173
Optimizing FDM/FFF in Additive Manufacturing: A Review of Process Parameters and Material Impacts on Mechanical Properties
Abstract:
This paper examines the evolution, processes, and optimization of Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF) in additive manufacturing, synthesizing insights from existing literature on its mechanical properties and process parameters. Tracing its origins to rapid prototyping in the late 1980s, the paper highlights the advantages of FDM/FFF, such as cost-effectiveness and reduced material waste, while also addressing challenges like limited part strength. It consolidates knowledge on commonly used materials polylactic acid, acrylonitrile butadiene styrene, polycarbonate, and nylon through comparative analyses of their mechanical and thermophysical properties. The review critically assesses key process parameters, including raster angle, layer height, infill density, infill pattern, build orientation, printing speed, and nozzle diameter, drawing from diverse studies to explore their influence on part quality. Key findings include the potential of a 45°/-45° raster angle and a 0.2 mm layer height to enhance tensile strength, as well as the trade-offs associated with higher infill densities, which improve energy absorption but increase printing time. The paper identifies gaps in dimensional accuracy and material innovation, proposing future research directions to advance FDM/FFF applications across industries.
Info:
Periodical:
Pages:
125-152
DOI:
Citation:
Online since:
January 2026
Authors:
Price:
Сopyright:
© 2026 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] C.K. Chua, K.F. Leong, C.S. Lim, Rapid prototyping: principles and applications (with companion CD-ROM), World Scientific Publishing Company, 2010.
DOI: 10.1142/6665
[2] K. V Wong, A. Hernandez, A review of additive manufacturing, Int Sch Res Notices 2012 (2012).
[3] T. Hachimi, F. Majid, N. Zekriti, R. Rhanim, H. Rhanim, Improvement of 3D printing polymer simulations considering converting G-code to Abaqus, The International Journal of Advanced Manufacturing Technology 131 (2024) 5193–5208.
[4] S. Ashley, Rapid prototyping systems, Mechanical Engineering 113 (1991) 34.
[5] K. Walia, A. Khan, P. Breedon, Polymer-based additive manufacturing: process optimisation for low-cost industrial robotics manufacture, Polymers (Basel) 13 (2021) 2809.
[6] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani, Additive manufacturing technologies, Springer, 2021.
[7] B. Lu, D. Li, X. Tian, Development Trends in Additive Manufacturing and 3D Printing, Engineering 1 (2015) 85–89.
[8] X. Zhou, Y. Feng, J. Zhang, Y. Shi, L. Wang, Recent advances in additive manufacturing technology for bone tissue engineering scaffolds, International Journal of Advanced Manufacturing Technology 108 (2020) 3591–3606.
[9] M.H. Mobarak, M.A. Islam, N. Hossain, M.Z. Al Mahmud, M.T. Rayhan, N.J. Nishi, M.A. Chowdhury, Recent advances of additive manufacturing in implant fabrication – A review, Applied Surface Science Advances 18 (2023) 100462.
[10] D.P. Cole, J.C. Riddick, H.M. Iftekhar Jaim, K.E. Strawhecker, N.E. Zander, Interfacial mechanical behavior of 3D printed ABS, J Appl Polym Sci 133 (2016).
DOI: 10.1002/app.43671
[11] W. Terry, T. Gornet, History of additive manufacturing, Wohlers Report, Wohlers Associates, USA (2014).
[12] J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dental Materials 32 (2016) 54–64.
[13] S.-S. Yao, F.-L. Jin, K.Y. Rhee, D. Hui, S.-J. Park, Recent advances in carbon-fiber-reinforced thermoplastic composites: A review, Compos B Eng 142 (2018) 241–250.
[14] E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Rapid manufacturing of metal components by laser forming, Int J Mach Tools Manuf 46 (2006) 1459–1468.
[15] P. Kulkarni, A. Marsan, D. Dutta, A review of process planning techniques in layered manufacturing, Rapid Prototyp J 6 (2000) 18–35.
[16] H. Jan, P. Jouni, T. Jukka, W. Manfred, Rapid manufacturing in the spare parts supply chain: Alternative approaches to capacity deployment, J. Manuf. Technol. Manag 21 (2010) 687–697.
[17] H. Taoufik, M. Fatima, R. Hassan, Modeling of the fracture behavior of the 3D Printed polymers using XFEM, Procedia Structural Integrity 47 (2023) 711–722.
[18] F. Majid, T. Hachimi, H. Rhanim, R. Rhanim, Delamination effect on the mechanical behavior of 3D printed polymers, Frattura Ed Integrità Strutturale 17 (2023) 26–36.
[19] J.P. Kruth, M.C. Leu, T. Nakagawa, Progress in Additive Manufacturing and Rapid Prototyping, CIRP Annals 47 (1998) 525–540.
[20] C.-C. Kuo, S.-X. Qiu, G.-Y. Lee, J. Zhou, H.-Q. He, Characterizations of polymer injection molding tools with conformal cooling channels fabricated by direct and indirect rapid tooling technologies, The International Journal of Advanced Manufacturing Technology 117 (2021) 343–360.
[21] A. Gebhardt, Rapid prototyping–rapid tooling–rapid manufacturing, Carl Hanser, München (2007).
[22] K.M. Rahman, T. Letcher, R. Reese, Mechanical properties of additively manufactured PEEK components using fused filament fabrication, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015: p. V02AT02A009.
[23] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Experimental investigation and empirical modelling of FDM process for compressive strength improvement, J Adv Res 3 (2012) 81–90.
[24] S. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp J 8 (2002) 248–257.
[25] N. Naboulsi, T. Hachimi, F. Majid, R. Rhanim, N. Zekriti, H. Rhanim, Modeling and control of 3D filament extruder, in: Procedia Structural Integrity, 2021.
[26] N. Zekriti, F. Majid, H. Taoufik, Y. Tounsi, R. Rhanim, I. Mrani, H. Rhanim, Improvement of crack tip position estimation in DIC images by image processing methods, Frattura Ed Integrità Strutturale 17 (2023) 61–71.
[27] T. Hachimi, N. Naboulsi, F. Majid, R. Rhanim, I. Mrani, H. Rhanim, Design and Manufacturing of a 3D printer filaments extruder, Procedia Structural Integrity 33 (2021) 907–916.
[28] P. Chennakesava, Y.S. Narayan, Fused deposition modeling-insights, in: Proceedings of the International Conference on Advances in Design and Manufacturing ICAD&M, 2014: p.1345.
[29] M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj, K. Sudhakar, Mechanical property of FDM printed ABS: influence of printing parameters, The International Journal of Advanced Manufacturing Technology 102 (2019) 2779–2796.
[30] P. Wang, B. Zou, H. Xiao, S. Ding, C. Huang, Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK, J Mater Process Technol 271 (2019) 62–74.
[31] H. Bakhtiari, M. Aamir, M. Tolouei-Rad, Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review, Applied Sciences 13 (2023) 904.
DOI: 10.3390/app13020904
[32] A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane, M.E. Touhami, Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly (ether ether ketone) parts, J Appl Polym Sci 137 (2020) 49087.
DOI: 10.1002/app.49087
[33] X. Gao, N. Yu, J. Li, Influence of printing parameters and filament quality on structure and properties of polymer composite components used in the fields of automotive, Structure and Properties of Additive Manufactured Polymer Components (2020) 303–330.
[34] D.R. Katti, A. Sharma, K.S. Katti, Predictive methodologies for design of bone tissue engineering scaffolds, in: Materials for Bone Disorders, Elsevier, 2017: p.453–492.
[35] Q. Sun, G.M. Rizvi, C.T. Bellehumeur, P. Gu, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp J 14 (2008) 72–80.
[36] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater Des 31 (2010) 287–295.
[37] J.M. Chacón, M.Á. Caminero, P.J. Núñez, E. García-Plaza, J.P. Bécar, Effect of nozzle diameter on mechanical and geometric performance of 3D printed carbon fibre-reinforced composites manufactured by fused filament fabrication, Rapid Prototyp J 27 (2021) 769–784.
[38] M. Galeja, A. Hejna, P. Kosmela, A. Kulawik, Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle, Materials 13 (2020) 297.
DOI: 10.3390/ma13020297
[39] N. Dhakal, X. Wang, C. Espejo, A. Morina, N. Emami, Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers, Journal of Materials Research and Technology 23 (2023) 1252–1272.
[40] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, Effect of infill parameters on tensile mechanical behavior in desktop 3D printing, 3D Print Addit Manuf 3 (2016) 183–192.
[41] D. Croccolo, M. De Agostinis, G. Olmi, Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30, Comput Mater Sci 79 (2013) 506–518.
[42] M.R. Ayatollahi, A. Nabavi-Kivi, B. Bahrami, M.Y. Yahya, M.R. Khosravani, The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens, Eng Fract Mech 237 (2020) 107225.
[43] C. Abeykoon, P. Sri-Amphorn, A. Fernando, Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures, International Journal of Lightweight Materials and Manufacture 3 (2020) 284–297.
[44] M. Bertoldi, M.A. Yardimci, C.M. Pistor, S.I. Guceri, G. Sala, Mechanical characterization of parts processed via fused deposition, in: 1998 International Solid Freeform Fabrication Symposium, 1998.
[45] O.S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, B.A. Pregger, Effect of layer orientation on mechanical properties of rapid prototyped samples, Materials and Manufacturing Processes 15 (2000) 107–122.
[46] A.W. Fatimatuzahraa, B. Farahaina, W.A.Y. Yusoff, The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts, in: 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), IEEE, 2011: p.22–27.
[47] I. Durgun, R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyp J 20 (2014) 228–235.
[48] F. Górski, R. Wichniarek, W. Kuczko, J. Andrzejewski, Experimental determination of critical orientation of ABS parts manufactured using fused deposition modelling technology, Journal of Machine Engineering 15 (2015) 121–132.
[49] T. Hachimi, N. Zekriti, R. Rhanim, H. Rhanim, F. Majid, Simulation of the Effects of Filament Orientation on Crack Propagation Using Extended Finite Element Method, in: E.M. Elkhattabi, M. Boutahir, K. Termentzidis, K. Nakamura, A. Rahmani (Eds.), Advanced Materials for Sustainable Energy and Engineering, Springer Nature Switzerland, Cham, 2024: p.469–474.
[50] G. Gorski, Hybrid drawing techniques: Design process and presentation, Routledge, 2014.
[51] S. Ziemian, M. Okwara, C.W. Ziemian, Tensile and fatigue behavior of layered acrylonitrile butadiene styrene, Rapid Prototyp J 21 (2015) 270–278.
[52] A. Lanzotti, M. Grasso, G. Staiano, M. Martorelli, The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer, Rapid Prototyp J 21 (2015) 604–617.
[53] T. Letcher, B. Rankouhi, S. Javadpour, Experimental study of mechanical properties of additively manufactured ABS plastic as a function of layer parameters, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015: p. V02AT02A018.
[54] B.M. Tymrak, M. Kreiger, J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Mater Des 58 (2014) 242–246.
[55] R. Hernandez, D. Slaughter, D. Whaley, J. Tate, B. Asiabanpour, Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling, in: 2016 International Solid Freeform Fabrication Symposium, University of Texas at Austin, 2016.
[56] M. Dawoud, I. Taha, S.J. Ebeid, Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques, J Manuf Process 21 (2016) 39–45.
[57] J.T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts, Rapid Prototyp J 23 (2017) 811–824.
[58] S.S.G. Iyer, O. Keles, Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene, Composites Communications 32 (2022) 101163.
[59] B.G. Çakan, Effects of raster angle on tensile and surface roughness properties of various FDM filaments, Journal of Mechanical Science and Technology 35 (2021) 3347–3353.
[60] K.G.J. Christiyan, U. Chandrasekhar, K. Venkateswarlu, A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite, in: IOP Conf Ser Mater Sci Eng, IOP Publishing, 2016: p.012109.
[61] R.H. Sanatgar, C. Campagne, V. Nierstrasz, Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters, Appl Surf Sci 403 (2017) 551–563.
[62] A. Nabavi-Kivi, M.R. Ayatollahi, P. Rezaeian, N. Razavi, Investigating the effect of printing speed and mode mixity on the fracture behavior of FDM-ABS specimens, Theoretical and Applied Fracture Mechanics 118 (2022) 103223.
[63] P. Rezaeian, M.R. Ayatollahi, A. Nabavi-Kivi, N. Razavi, Effect of printing speed on tensile and fracture behavior of ABS specimens produced by fused deposition modeling, Eng Fract Mech 266 (2022) 108393.
[64] H.K. Dave, N.H. Patadiya, A.R. Prajapati, S.R. Rajpurohit, Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part, Proc Inst Mech Eng C J Mech Eng Sci 235 (2021) 1811–1827.
[65] S.A. Khan, B.A. Siddiqui, M. Fahad, M.A. Khan, Evaluation of the effect of infill pattern on mechanical stregnth of additively manufactured specimen, in: Materials Science Forum, Trans Tech Publ, 2017: p.128–132.
[66] M.T. Birosz, D. Ledenyak, M. Ando, Effect of FDM infill patterns on mechanical properties, Polym Test 113 (2022) 107654.
[67] M.F. Jasim, T.F. Abbas, A.F. Huayier, The effect of infill pattern on tensile strength of PLA material in fused deposition modeling (FDM) process, Engineering and Technology Journal 40 (2022) 1–8.
[68] M.R. Derise, A. Zulkharnain, Effect of infill pattern and density on tensile properties of 3d printed polylactic acid parts via fused deposition modeling (FDM), International Journal of Mechanical and Mechatronics Engineering 20 (2020) 54–63.
[69] M. Rismalia, S.C. Hidajat, I.G.R. Permana, B. Hadisujoto, M. Muslimin, F. Triawan, Infill pattern and density effects on the tensile properties of 3D printed PLA material, in: J Phys Conf Ser, IOP Publishing, 2019: p.044041.
[70] M.Q. Tanveer, G. Mishra, S. Mishra, R. Sharma, Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts-a current review, Mater Today Proc 62 (2022) 100–108.
[71] A. Pandžić, D. Hodžić, A. Milovanović, Effect of infill type and density on tensile properties of PLA material for FDM process, in: Proceedings of the 30th DAAAM International Symposium, DAAAM International, 2019: p.545–554.
[72] M. Lalegani Dezaki, M.K.A.M. Ariffin, A. Serjouei, A. Zolfagharian, S. Hatami, M. Bodaghi, Influence of infill patterns generated by CAD and FDM 3D printer on surface roughness and tensile strength properties, Applied Sciences 11 (2021) 7272.
DOI: 10.3390/app11167272
[73] C. Dudescu, L. Racz, Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials, ACTA Univ. Cibiniensis 69 (2017) 23–30.
[74] H.K. Dave, B.H. Patel, S.R. Rajpurohit, A.R. Prajapati, D. Nedelcu, Effect of multi-infill patterns on tensile behavior of FDM printed parts, Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (2021) 23.
[75] M. Naik, D.G. Thakur, S. Chandel, An insight into the effect of printing orientation on tensile strength of multi-infill pattern 3D printed specimen: experimental study, Mater Today Proc 62 (2022) 7391–7395.
[76] M. Lalegani Dezaki, M.K.A. Mohd Ariffin, The effects of combined infill patterns on mechanical properties in fdm process, Polymers (Basel) 12 (2020) 2792.
[77] C.K. Yeoh, C.S. Cheah, R. Pushpanathan, C.C. Song, M.A. Tan, P.L. Teh, Effect of infill pattern on mechanical properties of 3D printed PLA and cPLA, in: IOP Conf Ser Mater Sci Eng, IOP Publishing, 2020: p.012064.
[78] E.E. Cho, H.H. Hein, Z. Lynn, S.J. Hla, T. Tran, Investigation on influence of infill pattern and layer thickness on mechanical strength of PLA material in 3D printing technology, J. Eng. Sci. Res 3 (2019) 27–37.
[79] R. Srinivasan, K.N. Kumar, A.J. Ibrahim, K. V Anandu, R. Gurudhevan, Impact of fused deposition process parameter (infill pattern) on the strength of PETG part, Mater Today Proc 27 (2020) 1801–1805.
[80] P. DEMİRCİOĞLU, H.S. SUCUOĞLU, İ. BÖĞREKCİ, A. GÜLTEKİN, The effect of three dimensional printed infill pattern on structural strength, El-Cezeri 5 (2018) 785–796.
[81] W. Yu, X. Wang, X. Yin, E. Ferraris, J. Zhang, The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts, Mater Des 226 (2023) 111687.
[82] A. Gnatowski, R. Gołębski, P. Sikora, Analysis of the impact of changes in thermomechanical properties of polymer materials on the machining process of gears, Polymers (Basel) 13 (2020) 28.
[83] S. Farashi, F. Vafaee, Effect of printing parameters on the tensile strength of FDM 3D samples: a meta-analysis focusing on layer thickness and sample orientation, Progress in Additive Manufacturing (2022) 1–18.
[84] B. Rankouhi, S. Javadpour, F. Delfanian, T. Letcher, Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation, Journal of Failure Analysis and Prevention 16 (2016) 467–481.
[85] W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, J. Zhao, Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS, Materials 8 (2015) 5834–5846.
DOI: 10.3390/ma8095271
[86] V.B. Nidagundi, R. Keshavamurthy, C.P.S. Prakash, Studies on parametric optimization for fused deposition modelling process, Mater Today Proc 2 (2015) 1691–1699.
[87] F. Rayegani, G.C. Onwubolu, Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE), The International Journal of Advanced Manufacturing Technology 73 (2014) 509–519.
[88] S.K. Panda, S. Padhee, S. Anoop Kumar, S.S. Mahapatra, Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique, Intell Inf Manag 1 (2009) 89.
[89] M. Raju, M.K. Gupta, N. Bhanot, V.S. Sharma, A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters, J Intell Manuf 30 (2019) 2743–2758.
[90] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method, Mater Des 30 (2009) 4243–4252.
[91] T. Nancharaiah, D.R. Raju, V.R. Raju, An experimental investigation on surface quality and dimensional accuracy of FDM components, International Journal on Emerging Technologies 1 (2010) 106–111.
[92] N.S.A. Bakar, M.R. Alkahari, H. Boejang, Analysis on fused deposition modelling performance, Journal of Zhejiang University-Science A 11 (2010) 972–977.
[93] J.R. Stojković, R. Turudija, N. Vitković, F. Górski, A. Păcurar, A. Pleşa, A. Ianoşi-Andreeva-Dimitrova, R. Păcurar, An Experimental Study on the Impact of Layer Height and Annealing Parameters on the Tensile Strength and Dimensional Accuracy of FDM 3D Printed Parts, Materials 16 (2023) 4574.
DOI: 10.3390/ma16134574
[94] M.A. Mazlan, M.A. Anas, N.A. Nor Izmin, A.H. Abdullah, Effects of Infill Density, Wall Perimeter and Layer Height in Fabricating 3D Printing Products, Materials 16 (2023) 695.
DOI: 10.3390/ma16020695
[95] S. Cahyati, Y. Al Furqon, THE LAYER HEIGHT VARIATIONS EFFECT ON TENSILE STRENGTH OF 3D PRINTING PRODUCT PLA MATERIAL BASED, Jurnal Rekayasa Mesin 13 (2022) 647–657.
[96] M. Vaezi, C.K. Chua, Effects of layer thickness and binder saturation level parameters on 3D printing process, The International Journal of Advanced Manufacturing Technology 53 (2011) 275–284.
[97] M. Murjito, M.I. Mamungkas, R.D. Bintara, The effect of layer height and deposit orientation to surface quality on 3D printed polylactic acid (PLA), in: AIP Conf Proc, AIP Publishing, 2022.
DOI: 10.1063/5.0094483
[98] G. Percoco, L. Arleo, G. Stano, F. Bottiglione, Analytical model to predict the extrusion force as a function of the layer height, in extrusion based 3D printing, Addit Manuf 38 (2021) 101791.
[99] K. Almansoori, S. Pervaiz, Effect of layer height, print speed and cell geometry on mechanical properties of marble PLA based 3D printed parts, Smart Materials in Manufacturing 1 (2023) 100023.
[100] R. Baptista, M. Guedes, Porosity and pore design influence on fatigue behavior of 3D printed scaffolds for trabecular bone replacement, J Mech Behav Biomed Mater 117 (2021) 104378.
[101] R. Baptista, M. Guedes, Fatigue behavior of different geometry scaffolds for bone replacement, Procedia Structural Integrity 17 (2019) 539–546.
[102] G. V Salmoria, D. Hotza, P. Klauss, L.A. Kanis, C.R.M. Roesler, Manufacturing of porous polycaprolactone prepared with different particle sizes and infrared laser sintering conditions: microstructure and mechanical properties, Advances in Mechanical Engineering 6 (2014) 640496.
DOI: 10.1155/2014/640496
[103] P.K. Mishra, P. Senthil, S. Adarsh, M.S. Anoop, An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts, Composites Communications 24 (2021) 100605.
[104] M.Q. Tanveer, A. Haleem, M. Suhaib, Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation, SN Appl Sci 1 (2019) 1–12.
[105] R. Srinivasan, W. Ruban, A. Deepanraj, R. Bhuvanesh, T. Bhuvanesh, Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modelling, Mater Today Proc 27 (2020) 1838–1842.
[106] S.S. Ambati, R. Ambatipudi, Effect of infill density and infill pattern on the mechanical properties of 3D printed PLA parts, Mater Today Proc 64 (2022) 804–807.
[107] I. Bogrekci, P. DEMIRCIOGLU, H.S. Sucuoglu, O. TURHANLAR, The effect of the infill type and density on hardness of 3D printed parts, International Journal of 3d Printing Technologies and Digital Industry 3 (2019) 212–219.
[108] S. Dev, R. Srivastava, Effect of infill parameters on material sustainability and mechanical properties in fused deposition modelling process: A case study, Progress in Additive Manufacturing 6 (2021) 631–642.
[109] R.A. Mensah, D.A. Edström, O. Lundberg, V. Shanmugam, L. Jiang, X. Qiang, M. Försth, G. Sas, M. Hedenqvist, O. Das, The effect of infill density on the fire properties of polylactic acid 3D printed parts: A short communication, Polym Test 111 (2022) 107594.
[110] C.-H. Liu, P.-T. Hung, Effect of the infill density on the performance of a 3D-printed compliant finger, Mater Des 223 (2022) 111203.
[111] Z. Ali, Y. Yan, H. Mei, L. Cheng, L. Zhang, Effect of infill density, build direction and heat treatment on the tensile mechanical properties of 3D-printed carbon-fiber nylon composites, Compos Struct 304 (2023) 116370.
[112] M.W. Alhazmi, A. Backar, A.H. Backar, Influence of infill density and orientation on the mechanical response of PLA+ specimens produced using FDM 3D printing, Int. J. Adv. Sci. Technol 29 (2020).
[113] M. Müller, P. Jirků, V. Šleger, R.K. Mishra, M. Hromasová, J. Novotný, Effect of Infill Density in FDM 3D Printing on Low-Cycle Stress of Bamboo-Filled PLA-Based Material, Polymers (Basel) 14 (2022) 4930.
[114] T. Tezel, V. Kovan, Determination of optimum production parameters for 3D printers based on nozzle diameter, Rapid Prototyp J 28 (2022) 185–194.
[115] M. Fischer, V. Schöppner, Fatigue Behavior of FDM Parts Manufactured with Ultem 9085, JOM 69 (2017) 563–568.
[116] P. Czyżewski, D. Marciniak, B. Nowinka, M. Borowiak, M. Bieliński, Influence of extruder's nozzle diameter on the improvement of functional properties of 3D-printed PLA products, Polymers (Basel) 14 (2022) 356.
[117] F.J. Mercado Rivera, A.J. Rojas Arciniegas, Additive manufacturing methods: techniques, materials, and closed-loop control applications, The International Journal of Advanced Manufacturing Technology 109 (2020) 17–31.
[118] H. Rejdali, I. Salhi, A. Hajjaji, J. Jay, F. Belhora, Effect of DMSO and Triacetin Solvents on Polyvinylidene Fluoride Polymorphs: Molecular Dynamics Simulations, Physica Status Solidi (a) 221 (2024) 2400207.
[119] M.N. Sudin, N.M. Daud, F.R. Ramli, M.A. Yusuff, The Effect of Nozzle Size on the Tensile and Flexural Properties of PLA Parts Fabricated Via FDM, Science, Engineering and Technology 3 (2023) 33–43.
[120] S. Ding, B. Zou, P. Wang, H. Ding, Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM, Polym Test 78 (2019) 105948.
[121] E. Ghassemieh, H.K. Versteeg, M. Acar, The effect of nozzle geometry on the flow characteristics of small water jets, Proc Inst Mech Eng C J Mech Eng Sci 220 (2006) 1739–1753.
[122] M. David, N. Freund, K. Dröder, D. Lowke, The effects of nozzle diameter and length on the resulting strand properties for shotcrete 3D printing, Mater Struct 56 (2023) 157.
[123] D. Nuyttens, K. Baetens, M. De Schampheleire, B. Sonck, Effect of nozzle type, size and pressure on spray droplet characteristics, Biosyst Eng 97 (2007) 333–345.
[124] G. Poojitha, P. Talari, S. Banoth, A. Kumar, Effects of combined infill angle with honeycomb pattern on the mechanical properties of HIPS and polypropylene in FDM process, Mater Today Proc (2023).
[125] A. Smirnov, N. Nikitin, P. Peretyagin, R. Khmyrov, E. Kuznetsova, N.W. Solis Pinargote, Experimental and Statistical Modeling for Effect of Nozzle Diameter, Filling Pattern, and Layer Height of FDM-Printed Ceramic–Polymer Green Body on Biaxial Flexural Strength of Sintered Alumina Ceramic, Journal of Composites Science 7 (2023) 381.
DOI: 10.3390/jcs7090381
[126] M. Simonelli, Y.Y. Tse, C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V, Materials Science and Engineering: A 616 (2014) 1–11.
[127] N.S. Moghaddam, S.E. Saghaian, A. Amerinatanzi, H. Ibrahim, P. Li, G.P. Toker, H.E. Karaca, M. Elahinia, Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting, Materials Science and Engineering: A 724 (2018) 220–230.
[128] P. Bayati, A. Jahadakbar, M. Barati, M. Nematollahi, L. Saint-Sulpice, M. Haghshenas, S.A. Chirani, M.J. Mahtabi, M. Elahinia, Toward low and high cycle fatigue behavior of SLM-fabricated NiTi: Considering the effect of build orientation and employing a self-heating approach, Int J Mech Sci 185 (2020) 105878.
[129] K. Safaei, M. Nematollahi, P. Bayati, H. Dabbaghi, O. Benafan, M. Elahinia, Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes, Eng Struct 226 (2021) 111383.
[130] K. Safaei, N.T. Andani, M. Nematollahi, O. Benafan, B. Poorganji, M. Elahinia, The Build Orientation Dependency of NiTi Shape Memory Alloy Processed by Laser Powder Bed Fusion, Shape Memory and Superelasticity 8 (2022) 265–276.
[131] Ö. Keleş, C.W. Blevins, K.J. Bowman, Effect of build orientation on the mechanical reliability of 3D printed ABS, Rapid Prototyp J 23 (2017) 320–328.
[132] M. Seif, Failure Analysis and Quality Assessment of 3D Printed ABS Parts, ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018 1 (2018).
[133] V. Wibisono, H. Firmanto, The Effect of Infill Angle and Build Orientation on the Impact Strength and Production Time of Porous Infill Structure, International Journal of Sustainable Transportation Technology 6 (2023) 1–5.
[134] N. Beattie, N. Bock, T. Anderson, T. Edgeworth, T. Kloss, J. Swanson, Effects of build orientation on mechanical properties of fused deposition modeling parts, J Mater Eng Perform 30 (2021) 5059–5065.
[135] Z. Zhang, D. Yavas, Q. Liu, D. Wu, Effect of build orientation and raster pattern on the fracture behavior of carbon fiber reinforced polymer composites fabricated by additive manufacturing, Addit Manuf 47 (2021) 102204.
[136] N.H. Patadiya, H.K. Dave, S.R. Rajpurohit, Effect of build orientation on mechanical strength of FDM Printed PLA, in: Advances in Additive Manufacturing and Joining: Proceedings of AIMTDR 2018, Springer, 2020: p.301–307.
[137] S. Raut, V.S. Jatti, N.K. Khedkar, T.P. Singh, Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts, Procedia Materials Science 6 (2014) 1625–1630.
[138] B. Rankouhi, S. Javadpour, F. Delfanian, T. Letcher, Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation, Journal of Failure Analysis and Prevention 16 (2016) 467–481.
[139] V. Kovan, G. Altan, E.S. Topal, Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints, Journal of Mechanical Science and Technology 31 (2017) 2197–2201.
[140] O. Bamiduro, G. Owolabi, M.A. Haile, J.C. Riddick, The influence of load direction, microstructure, raster orientation on the quasi-static response of fused deposition modeling ABS, Rapid Prototyp J 25 (2019) 462–472.
[141] A. Garg, A. Bhattacharya, A. Batish, Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength, The International Journal of Advanced Manufacturing Technology 89 (2017) 2175–2191.
[142] R. Quintana, J.-W. Choi, K. Puebla, R. Wicker, Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type I specimens, The International Journal of Advanced Manufacturing Technology 46 (2010) 201–215.
[143] M. Eryildiz, Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: an experimental investigation, European Mechanical Science 5 (2021) 116–120.
DOI: 10.26701/ems.881254
[144] I.Q. Vu, L.B. Bass, C.B. Williams, D.A. Dillard, Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing, Addit Manuf 22 (2018) 447–461.
[145] L. Bass, N.A. Meisel, C.B. Williams, Exploring variability of orientation and aging effects in material properties of multi-material jetting parts, Rapid Prototyp J 22 (2016) 826–834.
[146] F. AIT HMAZI, H. BAGAR, A. MADANI, I. MRANI, A Novel Approach for Modelling and Predicting the Drying Kinetics of Couscous Grains Using Artificial Neural Networks, Journal of Food Composition and Analysis (2024) 106301.