Optimizing FDM/FFF in Additive Manufacturing: A Review of Process Parameters and Material Impacts on Mechanical Properties

Article Preview

Abstract:

This paper examines the evolution, processes, and optimization of Fused Deposition Modeling (FDM)/Fused Filament Fabrication (FFF) in additive manufacturing, synthesizing insights from existing literature on its mechanical properties and process parameters. Tracing its origins to rapid prototyping in the late 1980s, the paper highlights the advantages of FDM/FFF, such as cost-effectiveness and reduced material waste, while also addressing challenges like limited part strength. It consolidates knowledge on commonly used materials polylactic acid, acrylonitrile butadiene styrene, polycarbonate, and nylon through comparative analyses of their mechanical and thermophysical properties. The review critically assesses key process parameters, including raster angle, layer height, infill density, infill pattern, build orientation, printing speed, and nozzle diameter, drawing from diverse studies to explore their influence on part quality. Key findings include the potential of a 45°/-45° raster angle and a 0.2 mm layer height to enhance tensile strength, as well as the trade-offs associated with higher infill densities, which improve energy absorption but increase printing time. The paper identifies gaps in dimensional accuracy and material innovation, proposing future research directions to advance FDM/FFF applications across industries.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-152

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.K. Chua, K.F. Leong, C.S. Lim, Rapid prototyping: principles and applications (with companion CD-ROM), World Scientific Publishing Company, 2010.

DOI: 10.1142/6665

Google Scholar

[2] K. V Wong, A. Hernandez, A review of additive manufacturing, Int Sch Res Notices 2012 (2012).

Google Scholar

[3] T. Hachimi, F. Majid, N. Zekriti, R. Rhanim, H. Rhanim, Improvement of 3D printing polymer simulations considering converting G-code to Abaqus, The International Journal of Advanced Manufacturing Technology 131 (2024) 5193–5208.

DOI: 10.1007/s00170-024-13300-9

Google Scholar

[4] S. Ashley, Rapid prototyping systems, Mechanical Engineering 113 (1991) 34.

Google Scholar

[5] K. Walia, A. Khan, P. Breedon, Polymer-based additive manufacturing: process optimisation for low-cost industrial robotics manufacture, Polymers (Basel) 13 (2021) 2809.

DOI: 10.3390/polym13162809

Google Scholar

[6] I. Gibson, D. Rosen, B. Stucker, M. Khorasani, D. Rosen, B. Stucker, M. Khorasani, Additive manufacturing technologies, Springer, 2021.

DOI: 10.1007/978-3-030-56127-7

Google Scholar

[7] B. Lu, D. Li, X. Tian, Development Trends in Additive Manufacturing and 3D Printing, Engineering 1 (2015) 85–89.

Google Scholar

[8] X. Zhou, Y. Feng, J. Zhang, Y. Shi, L. Wang, Recent advances in additive manufacturing technology for bone tissue engineering scaffolds, International Journal of Advanced Manufacturing Technology 108 (2020) 3591–3606.

DOI: 10.1007/s00170-020-05444-1

Google Scholar

[9] M.H. Mobarak, M.A. Islam, N. Hossain, M.Z. Al Mahmud, M.T. Rayhan, N.J. Nishi, M.A. Chowdhury, Recent advances of additive manufacturing in implant fabrication – A review, Applied Surface Science Advances 18 (2023) 100462.

DOI: 10.1016/j.apsadv.2023.100462

Google Scholar

[10] D.P. Cole, J.C. Riddick, H.M. Iftekhar Jaim, K.E. Strawhecker, N.E. Zander, Interfacial mechanical behavior of 3D printed ABS, J Appl Polym Sci 133 (2016).

DOI: 10.1002/app.43671

Google Scholar

[11] W. Terry, T. Gornet, History of additive manufacturing, Wohlers Report, Wohlers Associates, USA (2014).

Google Scholar

[12] J.W. Stansbury, M.J. Idacavage, 3D printing with polymers: Challenges among expanding options and opportunities, Dental Materials 32 (2016) 54–64.

DOI: 10.1016/j.dental.2015.09.018

Google Scholar

[13] S.-S. Yao, F.-L. Jin, K.Y. Rhee, D. Hui, S.-J. Park, Recent advances in carbon-fiber-reinforced thermoplastic composites: A review, Compos B Eng 142 (2018) 241–250.

DOI: 10.1016/j.compositesb.2017.12.007

Google Scholar

[14] E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Rapid manufacturing of metal components by laser forming, Int J Mach Tools Manuf 46 (2006) 1459–1468.

DOI: 10.1016/j.ijmachtools.2005.09.005

Google Scholar

[15] P. Kulkarni, A. Marsan, D. Dutta, A review of process planning techniques in layered manufacturing, Rapid Prototyp J 6 (2000) 18–35.

DOI: 10.1108/13552540010309859

Google Scholar

[16] H. Jan, P. Jouni, T. Jukka, W. Manfred, Rapid manufacturing in the spare parts supply chain: Alternative approaches to capacity deployment, J. Manuf. Technol. Manag 21 (2010) 687–697.

DOI: 10.1108/17410381011063996

Google Scholar

[17] H. Taoufik, M. Fatima, R. Hassan, Modeling of the fracture behavior of the 3D Printed polymers using XFEM, Procedia Structural Integrity 47 (2023) 711–722.

DOI: 10.1016/j.prostr.2023.07.048

Google Scholar

[18] F. Majid, T. Hachimi, H. Rhanim, R. Rhanim, Delamination effect on the mechanical behavior of 3D printed polymers, Frattura Ed Integrità Strutturale 17 (2023) 26–36.

DOI: 10.3221/igf-esis.63.03

Google Scholar

[19] J.P. Kruth, M.C. Leu, T. Nakagawa, Progress in Additive Manufacturing and Rapid Prototyping, CIRP Annals 47 (1998) 525–540.

DOI: 10.1016/s0007-8506(07)63240-5

Google Scholar

[20] C.-C. Kuo, S.-X. Qiu, G.-Y. Lee, J. Zhou, H.-Q. He, Characterizations of polymer injection molding tools with conformal cooling channels fabricated by direct and indirect rapid tooling technologies, The International Journal of Advanced Manufacturing Technology 117 (2021) 343–360.

DOI: 10.1007/s00170-021-07778-w

Google Scholar

[21] A. Gebhardt, Rapid prototyping–rapid tooling–rapid manufacturing, Carl Hanser, München (2007).

DOI: 10.1007/978-3-446-43162-1

Google Scholar

[22] K.M. Rahman, T. Letcher, R. Reese, Mechanical properties of additively manufactured PEEK components using fused filament fabrication, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015: p. V02AT02A009.

DOI: 10.1115/imece2015-52209

Google Scholar

[23] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Experimental investigation and empirical modelling of FDM process for compressive strength improvement, J Adv Res 3 (2012) 81–90.

DOI: 10.1016/j.jare.2011.05.001

Google Scholar

[24] S. Ahn, M. Montero, D. Odell, S. Roundy, P.K. Wright, Anisotropic material properties of fused deposition modeling ABS, Rapid Prototyp J 8 (2002) 248–257.

DOI: 10.1108/13552540210441166

Google Scholar

[25] N. Naboulsi, T. Hachimi, F. Majid, R. Rhanim, N. Zekriti, H. Rhanim, Modeling and control of 3D filament extruder, in: Procedia Structural Integrity, 2021.

DOI: 10.1016/j.prostr.2021.10.109

Google Scholar

[26] N. Zekriti, F. Majid, H. Taoufik, Y. Tounsi, R. Rhanim, I. Mrani, H. Rhanim, Improvement of crack tip position estimation in DIC images by image processing methods, Frattura Ed Integrità Strutturale 17 (2023) 61–71.

DOI: 10.3221/igf-esis.63.06

Google Scholar

[27] T. Hachimi, N. Naboulsi, F. Majid, R. Rhanim, I. Mrani, H. Rhanim, Design and Manufacturing of a 3D printer filaments extruder, Procedia Structural Integrity 33 (2021) 907–916.

DOI: 10.1016/j.prostr.2021.10.101

Google Scholar

[28] P. Chennakesava, Y.S. Narayan, Fused deposition modeling-insights, in: Proceedings of the International Conference on Advances in Design and Manufacturing ICAD&M, 2014: p.1345.

Google Scholar

[29] M. Samykano, S.K. Selvamani, K. Kadirgama, W.K. Ngui, G. Kanagaraj, K. Sudhakar, Mechanical property of FDM printed ABS: influence of printing parameters, The International Journal of Advanced Manufacturing Technology 102 (2019) 2779–2796.

DOI: 10.1007/s00170-019-03313-0

Google Scholar

[30] P. Wang, B. Zou, H. Xiao, S. Ding, C. Huang, Effects of printing parameters of fused deposition modeling on mechanical properties, surface quality, and microstructure of PEEK, J Mater Process Technol 271 (2019) 62–74.

DOI: 10.1016/j.jmatprotec.2019.03.016

Google Scholar

[31] H. Bakhtiari, M. Aamir, M. Tolouei-Rad, Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review, Applied Sciences 13 (2023) 904.

DOI: 10.3390/app13020904

Google Scholar

[32] A. El Magri, K. El Mabrouk, S. Vaudreuil, H. Chibane, M.E. Touhami, Optimization of printing parameters for improvement of mechanical and thermal performances of 3D printed poly (ether ether ketone) parts, J Appl Polym Sci 137 (2020) 49087.

DOI: 10.1002/app.49087

Google Scholar

[33] X. Gao, N. Yu, J. Li, Influence of printing parameters and filament quality on structure and properties of polymer composite components used in the fields of automotive, Structure and Properties of Additive Manufactured Polymer Components (2020) 303–330.

DOI: 10.1016/b978-0-12-819535-2.00010-7

Google Scholar

[34] D.R. Katti, A. Sharma, K.S. Katti, Predictive methodologies for design of bone tissue engineering scaffolds, in: Materials for Bone Disorders, Elsevier, 2017: p.453–492.

DOI: 10.1016/b978-0-12-802792-9.00010-0

Google Scholar

[35] Q. Sun, G.M. Rizvi, C.T. Bellehumeur, P. Gu, Effect of processing conditions on the bonding quality of FDM polymer filaments, Rapid Prototyp J 14 (2008) 72–80.

DOI: 10.1108/13552540810862028

Google Scholar

[36] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Parametric appraisal of mechanical property of fused deposition modelling processed parts, Mater Des 31 (2010) 287–295.

DOI: 10.1016/j.matdes.2009.06.016

Google Scholar

[37] J.M. Chacón, M.Á. Caminero, P.J. Núñez, E. García-Plaza, J.P. Bécar, Effect of nozzle diameter on mechanical and geometric performance of 3D printed carbon fibre-reinforced composites manufactured by fused filament fabrication, Rapid Prototyp J 27 (2021) 769–784.

DOI: 10.1108/rpj-10-2020-0250

Google Scholar

[38] M. Galeja, A. Hejna, P. Kosmela, A. Kulawik, Static and dynamic mechanical properties of 3D printed ABS as a function of raster angle, Materials 13 (2020) 297.

DOI: 10.3390/ma13020297

Google Scholar

[39] N. Dhakal, X. Wang, C. Espejo, A. Morina, N. Emami, Impact of processing defects on microstructure, surface quality, and tribological performance in 3D printed polymers, Journal of Materials Research and Technology 23 (2023) 1252–1272.

DOI: 10.1016/j.jmrt.2023.01.086

Google Scholar

[40] M. Fernandez-Vicente, W. Calle, S. Ferrandiz, A. Conejero, Effect of infill parameters on tensile mechanical behavior in desktop 3D printing, 3D Print Addit Manuf 3 (2016) 183–192.

DOI: 10.1089/3dp.2015.0036

Google Scholar

[41] D. Croccolo, M. De Agostinis, G. Olmi, Experimental characterization and analytical modelling of the mechanical behaviour of fused deposition processed parts made of ABS-M30, Comput Mater Sci 79 (2013) 506–518.

DOI: 10.1016/j.commatsci.2013.06.041

Google Scholar

[42] M.R. Ayatollahi, A. Nabavi-Kivi, B. Bahrami, M.Y. Yahya, M.R. Khosravani, The influence of in-plane raster angle on tensile and fracture strengths of 3D-printed PLA specimens, Eng Fract Mech 237 (2020) 107225.

DOI: 10.1016/j.engfracmech.2020.107225

Google Scholar

[43] C. Abeykoon, P. Sri-Amphorn, A. Fernando, Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures, International Journal of Lightweight Materials and Manufacture 3 (2020) 284–297.

DOI: 10.1016/j.ijlmm.2020.03.003

Google Scholar

[44] M. Bertoldi, M.A. Yardimci, C.M. Pistor, S.I. Guceri, G. Sala, Mechanical characterization of parts processed via fused deposition, in: 1998 International Solid Freeform Fabrication Symposium, 1998.

Google Scholar

[45] O.S. Es-Said, J. Foyos, R. Noorani, M. Mendelson, R. Marloth, B.A. Pregger, Effect of layer orientation on mechanical properties of rapid prototyped samples, Materials and Manufacturing Processes 15 (2000) 107–122.

DOI: 10.1080/10426910008912976

Google Scholar

[46] A.W. Fatimatuzahraa, B. Farahaina, W.A.Y. Yusoff, The effect of employing different raster orientations on the mechanical properties and microstructure of Fused Deposition Modeling parts, in: 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), IEEE, 2011: p.22–27.

DOI: 10.1109/isbeia.2011.6088811

Google Scholar

[47] I. Durgun, R. Ertan, Experimental investigation of FDM process for improvement of mechanical properties and production cost, Rapid Prototyp J 20 (2014) 228–235.

DOI: 10.1108/rpj-10-2012-0091

Google Scholar

[48] F. Górski, R. Wichniarek, W. Kuczko, J. Andrzejewski, Experimental determination of critical orientation of ABS parts manufactured using fused deposition modelling technology, Journal of Machine Engineering 15 (2015) 121–132.

DOI: 10.12913/22998624/2359

Google Scholar

[49] T. Hachimi, N. Zekriti, R. Rhanim, H. Rhanim, F. Majid, Simulation of the Effects of Filament Orientation on Crack Propagation Using Extended Finite Element Method, in: E.M. Elkhattabi, M. Boutahir, K. Termentzidis, K. Nakamura, A. Rahmani (Eds.), Advanced Materials for Sustainable Energy and Engineering, Springer Nature Switzerland, Cham, 2024: p.469–474.

DOI: 10.1007/978-3-031-57022-3_57

Google Scholar

[50] G. Gorski, Hybrid drawing techniques: Design process and presentation, Routledge, 2014.

Google Scholar

[51] S. Ziemian, M. Okwara, C.W. Ziemian, Tensile and fatigue behavior of layered acrylonitrile butadiene styrene, Rapid Prototyp J 21 (2015) 270–278.

DOI: 10.1108/rpj-09-2013-0086

Google Scholar

[52] A. Lanzotti, M. Grasso, G. Staiano, M. Martorelli, The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer, Rapid Prototyp J 21 (2015) 604–617.

DOI: 10.1108/rpj-09-2014-0135

Google Scholar

[53] T. Letcher, B. Rankouhi, S. Javadpour, Experimental study of mechanical properties of additively manufactured ABS plastic as a function of layer parameters, in: ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2015: p. V02AT02A018.

DOI: 10.1115/imece2015-52634

Google Scholar

[54] B.M. Tymrak, M. Kreiger, J.M. Pearce, Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions, Mater Des 58 (2014) 242–246.

DOI: 10.1016/j.matdes.2014.02.038

Google Scholar

[55] R. Hernandez, D. Slaughter, D. Whaley, J. Tate, B. Asiabanpour, Analyzing the tensile, compressive, and flexural properties of 3D printed ABS P430 plastic based on printing orientation using fused deposition modeling, in: 2016 International Solid Freeform Fabrication Symposium, University of Texas at Austin, 2016.

Google Scholar

[56] M. Dawoud, I. Taha, S.J. Ebeid, Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques, J Manuf Process 21 (2016) 39–45.

DOI: 10.1016/j.jmapro.2015.11.002

Google Scholar

[57] J.T. Cantrell, S. Rohde, D. Damiani, R. Gurnani, L. DiSandro, J. Anton, A. Young, A. Jerez, D. Steinbach, C. Kroese, Experimental characterization of the mechanical properties of 3D-printed ABS and polycarbonate parts, Rapid Prototyp J 23 (2017) 811–824.

DOI: 10.1108/rpj-03-2016-0042

Google Scholar

[58] S.S.G. Iyer, O. Keles, Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene, Composites Communications 32 (2022) 101163.

DOI: 10.1016/j.coco.2022.101163

Google Scholar

[59] B.G. Çakan, Effects of raster angle on tensile and surface roughness properties of various FDM filaments, Journal of Mechanical Science and Technology 35 (2021) 3347–3353.

DOI: 10.1007/s12206-021-0708-8

Google Scholar

[60] K.G.J. Christiyan, U. Chandrasekhar, K. Venkateswarlu, A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite, in: IOP Conf Ser Mater Sci Eng, IOP Publishing, 2016: p.012109.

DOI: 10.1088/1757-899x/114/1/012109

Google Scholar

[61] R.H. Sanatgar, C. Campagne, V. Nierstrasz, Investigation of the adhesion properties of direct 3D printing of polymers and nanocomposites on textiles: Effect of FDM printing process parameters, Appl Surf Sci 403 (2017) 551–563.

DOI: 10.1016/j.apsusc.2017.01.112

Google Scholar

[62] A. Nabavi-Kivi, M.R. Ayatollahi, P. Rezaeian, N. Razavi, Investigating the effect of printing speed and mode mixity on the fracture behavior of FDM-ABS specimens, Theoretical and Applied Fracture Mechanics 118 (2022) 103223.

DOI: 10.1016/j.tafmec.2021.103223

Google Scholar

[63] P. Rezaeian, M.R. Ayatollahi, A. Nabavi-Kivi, N. Razavi, Effect of printing speed on tensile and fracture behavior of ABS specimens produced by fused deposition modeling, Eng Fract Mech 266 (2022) 108393.

DOI: 10.1016/j.engfracmech.2022.108393

Google Scholar

[64] H.K. Dave, N.H. Patadiya, A.R. Prajapati, S.R. Rajpurohit, Effect of infill pattern and infill density at varying part orientation on tensile properties of fused deposition modeling-printed poly-lactic acid part, Proc Inst Mech Eng C J Mech Eng Sci 235 (2021) 1811–1827.

DOI: 10.1177/0954406219856383

Google Scholar

[65] S.A. Khan, B.A. Siddiqui, M. Fahad, M.A. Khan, Evaluation of the effect of infill pattern on mechanical stregnth of additively manufactured specimen, in: Materials Science Forum, Trans Tech Publ, 2017: p.128–132.

DOI: 10.4028/www.scientific.net/msf.887.128

Google Scholar

[66] M.T. Birosz, D. Ledenyak, M. Ando, Effect of FDM infill patterns on mechanical properties, Polym Test 113 (2022) 107654.

DOI: 10.1016/j.polymertesting.2022.107654

Google Scholar

[67] M.F. Jasim, T.F. Abbas, A.F. Huayier, The effect of infill pattern on tensile strength of PLA material in fused deposition modeling (FDM) process, Engineering and Technology Journal 40 (2022) 1–8.

DOI: 10.30684/etj.2021.131733.1054

Google Scholar

[68] M.R. Derise, A. Zulkharnain, Effect of infill pattern and density on tensile properties of 3d printed polylactic acid parts via fused deposition modeling (FDM), International Journal of Mechanical and Mechatronics Engineering 20 (2020) 54–63.

Google Scholar

[69] M. Rismalia, S.C. Hidajat, I.G.R. Permana, B. Hadisujoto, M. Muslimin, F. Triawan, Infill pattern and density effects on the tensile properties of 3D printed PLA material, in: J Phys Conf Ser, IOP Publishing, 2019: p.044041.

DOI: 10.1088/1742-6596/1402/4/044041

Google Scholar

[70] M.Q. Tanveer, G. Mishra, S. Mishra, R. Sharma, Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts-a current review, Mater Today Proc 62 (2022) 100–108.

DOI: 10.1016/j.matpr.2022.02.310

Google Scholar

[71] A. Pandžić, D. Hodžić, A. Milovanović, Effect of infill type and density on tensile properties of PLA material for FDM process, in: Proceedings of the 30th DAAAM International Symposium, DAAAM International, 2019: p.545–554.

DOI: 10.2507/30th.daaam.proceedings.074

Google Scholar

[72] M. Lalegani Dezaki, M.K.A.M. Ariffin, A. Serjouei, A. Zolfagharian, S. Hatami, M. Bodaghi, Influence of infill patterns generated by CAD and FDM 3D printer on surface roughness and tensile strength properties, Applied Sciences 11 (2021) 7272.

DOI: 10.3390/app11167272

Google Scholar

[73] C. Dudescu, L. Racz, Effects of raster orientation, infill rate and infill pattern on the mechanical properties of 3D printed materials, ACTA Univ. Cibiniensis 69 (2017) 23–30.

DOI: 10.1515/aucts-2017-0004

Google Scholar

[74] H.K. Dave, B.H. Patel, S.R. Rajpurohit, A.R. Prajapati, D. Nedelcu, Effect of multi-infill patterns on tensile behavior of FDM printed parts, Journal of the Brazilian Society of Mechanical Sciences and Engineering 43 (2021) 23.

DOI: 10.1007/s40430-020-02742-3

Google Scholar

[75] M. Naik, D.G. Thakur, S. Chandel, An insight into the effect of printing orientation on tensile strength of multi-infill pattern 3D printed specimen: experimental study, Mater Today Proc 62 (2022) 7391–7395.

DOI: 10.1016/j.matpr.2022.02.305

Google Scholar

[76] M. Lalegani Dezaki, M.K.A. Mohd Ariffin, The effects of combined infill patterns on mechanical properties in fdm process, Polymers (Basel) 12 (2020) 2792.

DOI: 10.3390/polym12122792

Google Scholar

[77] C.K. Yeoh, C.S. Cheah, R. Pushpanathan, C.C. Song, M.A. Tan, P.L. Teh, Effect of infill pattern on mechanical properties of 3D printed PLA and cPLA, in: IOP Conf Ser Mater Sci Eng, IOP Publishing, 2020: p.012064.

DOI: 10.1088/1757-899x/957/1/012064

Google Scholar

[78] E.E. Cho, H.H. Hein, Z. Lynn, S.J. Hla, T. Tran, Investigation on influence of infill pattern and layer thickness on mechanical strength of PLA material in 3D printing technology, J. Eng. Sci. Res 3 (2019) 27–37.

DOI: 10.26666/rmp.jesr.2019.2.5

Google Scholar

[79] R. Srinivasan, K.N. Kumar, A.J. Ibrahim, K. V Anandu, R. Gurudhevan, Impact of fused deposition process parameter (infill pattern) on the strength of PETG part, Mater Today Proc 27 (2020) 1801–1805.

DOI: 10.1016/j.matpr.2020.03.777

Google Scholar

[80] P. DEMİRCİOĞLU, H.S. SUCUOĞLU, İ. BÖĞREKCİ, A. GÜLTEKİN, The effect of three dimensional printed infill pattern on structural strength, El-Cezeri 5 (2018) 785–796.

DOI: 10.31202/ecjse.423915

Google Scholar

[81] W. Yu, X. Wang, X. Yin, E. Ferraris, J. Zhang, The effects of thermal annealing on the performance of material extrusion 3D printed polymer parts, Mater Des 226 (2023) 111687.

DOI: 10.1016/j.matdes.2023.111687

Google Scholar

[82] A. Gnatowski, R. Gołębski, P. Sikora, Analysis of the impact of changes in thermomechanical properties of polymer materials on the machining process of gears, Polymers (Basel) 13 (2020) 28.

DOI: 10.3390/polym13010028

Google Scholar

[83] S. Farashi, F. Vafaee, Effect of printing parameters on the tensile strength of FDM 3D samples: a meta-analysis focusing on layer thickness and sample orientation, Progress in Additive Manufacturing (2022) 1–18.

DOI: 10.1007/s40964-021-00247-6

Google Scholar

[84] B. Rankouhi, S. Javadpour, F. Delfanian, T. Letcher, Failure analysis and mechanical characterization of 3D printed ABS with respect to layer thickness and orientation, Journal of Failure Analysis and Prevention 16 (2016) 467–481.

DOI: 10.1007/s11668-016-0113-2

Google Scholar

[85] W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, J. Zhao, Influence of layer thickness and raster angle on the mechanical properties of 3D-printed PEEK and a comparative mechanical study between PEEK and ABS, Materials 8 (2015) 5834–5846.

DOI: 10.3390/ma8095271

Google Scholar

[86] V.B. Nidagundi, R. Keshavamurthy, C.P.S. Prakash, Studies on parametric optimization for fused deposition modelling process, Mater Today Proc 2 (2015) 1691–1699.

DOI: 10.1016/j.matpr.2015.07.097

Google Scholar

[87] F. Rayegani, G.C. Onwubolu, Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE), The International Journal of Advanced Manufacturing Technology 73 (2014) 509–519.

DOI: 10.1007/s00170-014-5835-2

Google Scholar

[88] S.K. Panda, S. Padhee, S. Anoop Kumar, S.S. Mahapatra, Optimization of fused deposition modelling (FDM) process parameters using bacterial foraging technique, Intell Inf Manag 1 (2009) 89.

DOI: 10.4236/iim.2009.12014

Google Scholar

[89] M. Raju, M.K. Gupta, N. Bhanot, V.S. Sharma, A hybrid PSO–BFO evolutionary algorithm for optimization of fused deposition modelling process parameters, J Intell Manuf 30 (2019) 2743–2758.

DOI: 10.1007/s10845-018-1420-0

Google Scholar

[90] A.K. Sood, R.K. Ohdar, S.S. Mahapatra, Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method, Mater Des 30 (2009) 4243–4252.

DOI: 10.1016/j.matdes.2009.04.030

Google Scholar

[91] T. Nancharaiah, D.R. Raju, V.R. Raju, An experimental investigation on surface quality and dimensional accuracy of FDM components, International Journal on Emerging Technologies 1 (2010) 106–111.

Google Scholar

[92] N.S.A. Bakar, M.R. Alkahari, H. Boejang, Analysis on fused deposition modelling performance, Journal of Zhejiang University-Science A 11 (2010) 972–977.

DOI: 10.1631/jzus.a1001365

Google Scholar

[93] J.R. Stojković, R. Turudija, N. Vitković, F. Górski, A. Păcurar, A. Pleşa, A. Ianoşi-Andreeva-Dimitrova, R. Păcurar, An Experimental Study on the Impact of Layer Height and Annealing Parameters on the Tensile Strength and Dimensional Accuracy of FDM 3D Printed Parts, Materials 16 (2023) 4574.

DOI: 10.3390/ma16134574

Google Scholar

[94] M.A. Mazlan, M.A. Anas, N.A. Nor Izmin, A.H. Abdullah, Effects of Infill Density, Wall Perimeter and Layer Height in Fabricating 3D Printing Products, Materials 16 (2023) 695.

DOI: 10.3390/ma16020695

Google Scholar

[95] S. Cahyati, Y. Al Furqon, THE LAYER HEIGHT VARIATIONS EFFECT ON TENSILE STRENGTH OF 3D PRINTING PRODUCT PLA MATERIAL BASED, Jurnal Rekayasa Mesin 13 (2022) 647–657.

DOI: 10.21776/jrm.v13i3.823

Google Scholar

[96] M. Vaezi, C.K. Chua, Effects of layer thickness and binder saturation level parameters on 3D printing process, The International Journal of Advanced Manufacturing Technology 53 (2011) 275–284.

DOI: 10.1007/s00170-010-2821-1

Google Scholar

[97] M. Murjito, M.I. Mamungkas, R.D. Bintara, The effect of layer height and deposit orientation to surface quality on 3D printed polylactic acid (PLA), in: AIP Conf Proc, AIP Publishing, 2022.

DOI: 10.1063/5.0094483

Google Scholar

[98] G. Percoco, L. Arleo, G. Stano, F. Bottiglione, Analytical model to predict the extrusion force as a function of the layer height, in extrusion based 3D printing, Addit Manuf 38 (2021) 101791.

DOI: 10.1016/j.addma.2020.101791

Google Scholar

[99] K. Almansoori, S. Pervaiz, Effect of layer height, print speed and cell geometry on mechanical properties of marble PLA based 3D printed parts, Smart Materials in Manufacturing 1 (2023) 100023.

DOI: 10.1016/j.smmf.2023.100023

Google Scholar

[100] R. Baptista, M. Guedes, Porosity and pore design influence on fatigue behavior of 3D printed scaffolds for trabecular bone replacement, J Mech Behav Biomed Mater 117 (2021) 104378.

DOI: 10.1016/j.jmbbm.2021.104378

Google Scholar

[101] R. Baptista, M. Guedes, Fatigue behavior of different geometry scaffolds for bone replacement, Procedia Structural Integrity 17 (2019) 539–546.

DOI: 10.1016/j.prostr.2019.08.072

Google Scholar

[102] G. V Salmoria, D. Hotza, P. Klauss, L.A. Kanis, C.R.M. Roesler, Manufacturing of porous polycaprolactone prepared with different particle sizes and infrared laser sintering conditions: microstructure and mechanical properties, Advances in Mechanical Engineering 6 (2014) 640496.

DOI: 10.1155/2014/640496

Google Scholar

[103] P.K. Mishra, P. Senthil, S. Adarsh, M.S. Anoop, An investigation to study the combined effect of different infill pattern and infill density on the impact strength of 3D printed polylactic acid parts, Composites Communications 24 (2021) 100605.

DOI: 10.1016/j.coco.2020.100605

Google Scholar

[104] M.Q. Tanveer, A. Haleem, M. Suhaib, Effect of variable infill density on mechanical behaviour of 3-D printed PLA specimen: an experimental investigation, SN Appl Sci 1 (2019) 1–12.

DOI: 10.1007/s42452-019-1744-1

Google Scholar

[105] R. Srinivasan, W. Ruban, A. Deepanraj, R. Bhuvanesh, T. Bhuvanesh, Effect on infill density on mechanical properties of PETG part fabricated by fused deposition modelling, Mater Today Proc 27 (2020) 1838–1842.

DOI: 10.1016/j.matpr.2020.03.797

Google Scholar

[106] S.S. Ambati, R. Ambatipudi, Effect of infill density and infill pattern on the mechanical properties of 3D printed PLA parts, Mater Today Proc 64 (2022) 804–807.

DOI: 10.1016/j.matpr.2022.05.312

Google Scholar

[107] I. Bogrekci, P. DEMIRCIOGLU, H.S. Sucuoglu, O. TURHANLAR, The effect of the infill type and density on hardness of 3D printed parts, International Journal of 3d Printing Technologies and Digital Industry 3 (2019) 212–219.

Google Scholar

[108] S. Dev, R. Srivastava, Effect of infill parameters on material sustainability and mechanical properties in fused deposition modelling process: A case study, Progress in Additive Manufacturing 6 (2021) 631–642.

DOI: 10.1007/s40964-021-00184-4

Google Scholar

[109] R.A. Mensah, D.A. Edström, O. Lundberg, V. Shanmugam, L. Jiang, X. Qiang, M. Försth, G. Sas, M. Hedenqvist, O. Das, The effect of infill density on the fire properties of polylactic acid 3D printed parts: A short communication, Polym Test 111 (2022) 107594.

DOI: 10.1016/j.polymertesting.2022.107594

Google Scholar

[110] C.-H. Liu, P.-T. Hung, Effect of the infill density on the performance of a 3D-printed compliant finger, Mater Des 223 (2022) 111203.

DOI: 10.1016/j.matdes.2022.111203

Google Scholar

[111] Z. Ali, Y. Yan, H. Mei, L. Cheng, L. Zhang, Effect of infill density, build direction and heat treatment on the tensile mechanical properties of 3D-printed carbon-fiber nylon composites, Compos Struct 304 (2023) 116370.

DOI: 10.1016/j.compstruct.2022.116370

Google Scholar

[112] M.W. Alhazmi, A. Backar, A.H. Backar, Influence of infill density and orientation on the mechanical response of PLA+ specimens produced using FDM 3D printing, Int. J. Adv. Sci. Technol 29 (2020).

Google Scholar

[113] M. Müller, P. Jirků, V. Šleger, R.K. Mishra, M. Hromasová, J. Novotný, Effect of Infill Density in FDM 3D Printing on Low-Cycle Stress of Bamboo-Filled PLA-Based Material, Polymers (Basel) 14 (2022) 4930.

DOI: 10.3390/polym14224930

Google Scholar

[114] T. Tezel, V. Kovan, Determination of optimum production parameters for 3D printers based on nozzle diameter, Rapid Prototyp J 28 (2022) 185–194.

DOI: 10.1108/rpj-08-2020-0185

Google Scholar

[115] M. Fischer, V. Schöppner, Fatigue Behavior of FDM Parts Manufactured with Ultem 9085, JOM 69 (2017) 563–568.

DOI: 10.1007/s11837-016-2197-2

Google Scholar

[116] P. Czyżewski, D. Marciniak, B. Nowinka, M. Borowiak, M. Bieliński, Influence of extruder's nozzle diameter on the improvement of functional properties of 3D-printed PLA products, Polymers (Basel) 14 (2022) 356.

DOI: 10.3390/polym14020356

Google Scholar

[117] F.J. Mercado Rivera, A.J. Rojas Arciniegas, Additive manufacturing methods: techniques, materials, and closed-loop control applications, The International Journal of Advanced Manufacturing Technology 109 (2020) 17–31.

DOI: 10.1007/s00170-020-05663-6

Google Scholar

[118] H. Rejdali, I. Salhi, A. Hajjaji, J. Jay, F. Belhora, Effect of DMSO and Triacetin Solvents on Polyvinylidene Fluoride Polymorphs: Molecular Dynamics Simulations, Physica Status Solidi (a) 221 (2024) 2400207.

DOI: 10.1002/pssa.202400207

Google Scholar

[119] M.N. Sudin, N.M. Daud, F.R. Ramli, M.A. Yusuff, The Effect of Nozzle Size on the Tensile and Flexural Properties of PLA Parts Fabricated Via FDM, Science, Engineering and Technology 3 (2023) 33–43.

DOI: 10.54327/set2023/v3.i1.71

Google Scholar

[120] S. Ding, B. Zou, P. Wang, H. Ding, Effects of nozzle temperature and building orientation on mechanical properties and microstructure of PEEK and PEI printed by 3D-FDM, Polym Test 78 (2019) 105948.

DOI: 10.1016/j.polymertesting.2019.105948

Google Scholar

[121] E. Ghassemieh, H.K. Versteeg, M. Acar, The effect of nozzle geometry on the flow characteristics of small water jets, Proc Inst Mech Eng C J Mech Eng Sci 220 (2006) 1739–1753.

DOI: 10.1243/0954406jmes430

Google Scholar

[122] M. David, N. Freund, K. Dröder, D. Lowke, The effects of nozzle diameter and length on the resulting strand properties for shotcrete 3D printing, Mater Struct 56 (2023) 157.

DOI: 10.1617/s11527-023-02246-1

Google Scholar

[123] D. Nuyttens, K. Baetens, M. De Schampheleire, B. Sonck, Effect of nozzle type, size and pressure on spray droplet characteristics, Biosyst Eng 97 (2007) 333–345.

DOI: 10.1016/j.biosystemseng.2007.03.001

Google Scholar

[124] G. Poojitha, P. Talari, S. Banoth, A. Kumar, Effects of combined infill angle with honeycomb pattern on the mechanical properties of HIPS and polypropylene in FDM process, Mater Today Proc (2023).

DOI: 10.1016/j.matpr.2023.09.219

Google Scholar

[125] A. Smirnov, N. Nikitin, P. Peretyagin, R. Khmyrov, E. Kuznetsova, N.W. Solis Pinargote, Experimental and Statistical Modeling for Effect of Nozzle Diameter, Filling Pattern, and Layer Height of FDM-Printed Ceramic–Polymer Green Body on Biaxial Flexural Strength of Sintered Alumina Ceramic, Journal of Composites Science 7 (2023) 381.

DOI: 10.3390/jcs7090381

Google Scholar

[126] M. Simonelli, Y.Y. Tse, C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V, Materials Science and Engineering: A 616 (2014) 1–11.

DOI: 10.1016/j.msea.2014.07.086

Google Scholar

[127] N.S. Moghaddam, S.E. Saghaian, A. Amerinatanzi, H. Ibrahim, P. Li, G.P. Toker, H.E. Karaca, M. Elahinia, Anisotropic tensile and actuation properties of NiTi fabricated with selective laser melting, Materials Science and Engineering: A 724 (2018) 220–230.

DOI: 10.1016/j.msea.2018.03.072

Google Scholar

[128] P. Bayati, A. Jahadakbar, M. Barati, M. Nematollahi, L. Saint-Sulpice, M. Haghshenas, S.A. Chirani, M.J. Mahtabi, M. Elahinia, Toward low and high cycle fatigue behavior of SLM-fabricated NiTi: Considering the effect of build orientation and employing a self-heating approach, Int J Mech Sci 185 (2020) 105878.

DOI: 10.1016/j.ijmecsci.2020.105878

Google Scholar

[129] K. Safaei, M. Nematollahi, P. Bayati, H. Dabbaghi, O. Benafan, M. Elahinia, Torsional behavior and microstructure characterization of additively manufactured NiTi shape memory alloy tubes, Eng Struct 226 (2021) 111383.

DOI: 10.1016/j.engstruct.2020.111383

Google Scholar

[130] K. Safaei, N.T. Andani, M. Nematollahi, O. Benafan, B. Poorganji, M. Elahinia, The Build Orientation Dependency of NiTi Shape Memory Alloy Processed by Laser Powder Bed Fusion, Shape Memory and Superelasticity 8 (2022) 265–276.

DOI: 10.1007/s40830-022-00389-8

Google Scholar

[131] Ö. Keleş, C.W. Blevins, K.J. Bowman, Effect of build orientation on the mechanical reliability of 3D printed ABS, Rapid Prototyp J 23 (2017) 320–328.

DOI: 10.1108/rpj-09-2015-0122

Google Scholar

[132] M. Seif, Failure Analysis and Quality Assessment of 3D Printed ABS Parts, ASME 2018 13th International Manufacturing Science and Engineering Conference, MSEC 2018 1 (2018).

DOI: 10.1115/msec2018-6578

Google Scholar

[133] V. Wibisono, H. Firmanto, The Effect of Infill Angle and Build Orientation on the Impact Strength and Production Time of Porous Infill Structure, International Journal of Sustainable Transportation Technology 6 (2023) 1–5.

DOI: 10.31427/ijstt.2023.6.1.1

Google Scholar

[134] N. Beattie, N. Bock, T. Anderson, T. Edgeworth, T. Kloss, J. Swanson, Effects of build orientation on mechanical properties of fused deposition modeling parts, J Mater Eng Perform 30 (2021) 5059–5065.

DOI: 10.1007/s11665-021-05624-4

Google Scholar

[135] Z. Zhang, D. Yavas, Q. Liu, D. Wu, Effect of build orientation and raster pattern on the fracture behavior of carbon fiber reinforced polymer composites fabricated by additive manufacturing, Addit Manuf 47 (2021) 102204.

DOI: 10.1016/j.addma.2021.102204

Google Scholar

[136] N.H. Patadiya, H.K. Dave, S.R. Rajpurohit, Effect of build orientation on mechanical strength of FDM Printed PLA, in: Advances in Additive Manufacturing and Joining: Proceedings of AIMTDR 2018, Springer, 2020: p.301–307.

DOI: 10.1007/978-981-32-9433-2_26

Google Scholar

[137] S. Raut, V.S. Jatti, N.K. Khedkar, T.P. Singh, Investigation of the effect of built orientation on mechanical properties and total cost of FDM parts, Procedia Materials Science 6 (2014) 1625–1630.

DOI: 10.1016/j.mspro.2014.07.146

Google Scholar

[138] B. Rankouhi, S. Javadpour, F. Delfanian, T. Letcher, Failure Analysis and Mechanical Characterization of 3D Printed ABS With Respect to Layer Thickness and Orientation, Journal of Failure Analysis and Prevention 16 (2016) 467–481.

DOI: 10.1007/s11668-016-0113-2

Google Scholar

[139] V. Kovan, G. Altan, E.S. Topal, Effect of layer thickness and print orientation on strength of 3D printed and adhesively bonded single lap joints, Journal of Mechanical Science and Technology 31 (2017) 2197–2201.

DOI: 10.1007/s12206-017-0415-7

Google Scholar

[140] O. Bamiduro, G. Owolabi, M.A. Haile, J.C. Riddick, The influence of load direction, microstructure, raster orientation on the quasi-static response of fused deposition modeling ABS, Rapid Prototyp J 25 (2019) 462–472.

DOI: 10.1108/rpj-04-2018-0087

Google Scholar

[141] A. Garg, A. Bhattacharya, A. Batish, Chemical vapor treatment of ABS parts built by FDM: Analysis of surface finish and mechanical strength, The International Journal of Advanced Manufacturing Technology 89 (2017) 2175–2191.

DOI: 10.1007/s00170-016-9257-1

Google Scholar

[142] R. Quintana, J.-W. Choi, K. Puebla, R. Wicker, Effects of build orientation on tensile strength for stereolithography-manufactured ASTM D-638 type I specimens, The International Journal of Advanced Manufacturing Technology 46 (2010) 201–215.

DOI: 10.1007/s00170-009-2066-z

Google Scholar

[143] M. Eryildiz, Effect of build orientation on mechanical behaviour and build time of FDM 3D-printed PLA parts: an experimental investigation, European Mechanical Science 5 (2021) 116–120.

DOI: 10.26701/ems.881254

Google Scholar

[144] I.Q. Vu, L.B. Bass, C.B. Williams, D.A. Dillard, Characterizing the effect of print orientation on interface integrity of multi-material jetting additive manufacturing, Addit Manuf 22 (2018) 447–461.

DOI: 10.1016/j.addma.2018.05.036

Google Scholar

[145] L. Bass, N.A. Meisel, C.B. Williams, Exploring variability of orientation and aging effects in material properties of multi-material jetting parts, Rapid Prototyp J 22 (2016) 826–834.

DOI: 10.1108/rpj-11-2015-0169

Google Scholar

[146] F. AIT HMAZI, H. BAGAR, A. MADANI, I. MRANI, A Novel Approach for Modelling and Predicting the Drying Kinetics of Couscous Grains Using Artificial Neural Networks, Journal of Food Composition and Analysis (2024) 106301.

DOI: 10.1016/j.jfca.2024.106301

Google Scholar