Numerical and Experimental Insights into Crack Propagation in 3D-Printed ABS Using XFEM and Tensile Analysis

Article Preview

Abstract:

This study investigates the mechanical properties and crack propagation behavior of 3D-printed Acrylonitrile Butadiene Styrene (ABS) by integrating numerical simulations with experimental tensile testing. Utilizing the eXtended Finite Element Method (XFEM) within the Abaqus software, the research examines the damage evolution in ABS specimens under Mode I loading, focusing on the influence of factors such as print orientation, infill density, and layer thickness on mechanical performance. The numerical model, validated through uniaxial tensile tests conducted at a rate of 10 mm/min on ABS specimens with an initial notch, accurately captures the crack propagation process, revealing a two-stage fracture evolution: an initial stable phase over the first 60% of the specimen’s lifetime, followed by rapid crack growth leading to structural failure. Three distinct phases of crack propagation velocity are identified: low velocity during initiation, a quasi-static intermediate phase, and a high-velocity unstable phase, correlating with the evolution of the stress intensity factor. The close agreement between numerical and experimental results underscores the reliability of XFEM for modeling crack behavior, providing critical insights into optimizing 3D printing parameters to enhance the mechanical properties, structural integrity, and durability of ABS components for diverse engineering applications.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

153-162

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Hachimi, N. Naboulsi, F. Majid, R. Rhanim, I. Mrani, H. Rhanim, Design and Manufacturing of a 3D printer filaments extruder, Procedia Structural Integrity 33 (2021) 907–916.

DOI: 10.1016/j.prostr.2021.10.101

Google Scholar

[2] B. Lu, D. Li, X. Tian, Development Trends in Additive Manufacturing and 3D Printing, Engineering 1 (2015) 85–89.

Google Scholar

[3] U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, The Role of Additive Manufacturing in the Era of Industry 4.0, Procedia Manuf 11 (2017) 545–554.

DOI: 10.1016/j.promfg.2017.07.148

Google Scholar

[4] N. Naboulsi, T. Hachimi, F. Majid, R. Rhanim, N. Zekriti, H. Rhanim, Modeling and control of 3D filament extruder, Procedia Structural Integrity 33 (2021) 989–995.

DOI: 10.1016/j.prostr.2021.10.109

Google Scholar

[5] H. Taoufik, M. Fatima, R. Hassan, Modeling of the fracture behavior of the 3D Printed polymers using XFEM, Procedia Structural Integrity 47 (2023) 711–722.

DOI: 10.1016/j.prostr.2023.07.048

Google Scholar

[6] M. Sepahi, H. Abusalma, V. Jovanovic, H. Eisazadeh, M.T. Sepahi, Mechanical properties of 3D-printed parts made of polyethylene terephthalate glycol, Springer 30 (2021) 6851–6861.

DOI: 10.1007/s11665-021-06032-4

Google Scholar

[7] S. Nasiri, M.R. Khosravani, Applications of data-driven approaches in prediction of fatigue and fracture, Mater Today Commun 33 (2022) 104437.

DOI: 10.1016/j.mtcomm.2022.104437

Google Scholar

[8] C. Boller, Next generation structural health monitoring and its integration into aircraft design, Https://Doi.Org/10.1080/00207720050197730 31 (2010) 1333–1349.

Google Scholar

[9] F. Majid, T. Hachimi, H. Rhanim, R. Rhanim, Delamination effect on the mechanical behavior of 3D printed polymers, Frattura Ed Integrità Strutturale 17 (2023) 26–36.

DOI: 10.3221/igf-esis.63.03

Google Scholar

[10] N. Zekriti, F. Majid, H. Taoufik, Y. Tounsi, R. Rhanim, I. Mrani, H. Rhanim, Improvement of crack tip position estimation in DIC images by image processing methods, Frattura Ed Integrità Strutturale 17 (2023) 61–71.

DOI: 10.3221/igf-esis.63.06

Google Scholar

[11] T. Hachimi, N. Zekriti, R. Rhanim, H. Rhanim, F. Majid, Simulation of the Effects of Filament Orientation on Crack Propagation Using Extended Finite Element Method, in: E.M. Elkhattabi, M. Boutahir, K. Termentzidis, K. Nakamura, A. Rahmani (Eds.), Advanced Materials for Sustainable Energy and Engineering, Springer Nature Switzerland, Cham, 2024: p.469–474.

DOI: 10.1007/978-3-031-57022-3_57

Google Scholar

[12] L. Banks-Sills, D. Sherman, Comparison of methods for calculating stress intensity factors with quarter-point elements, Int J Fract 32 (1986) 127–140.

DOI: 10.1007/bf00019788

Google Scholar

[13] S.K. Chan, I.S. Tuba, W.K. Wilson, On the finite element method in linear fracture mechanics, Eng Fract Mech 2 (1970) 1–17.

DOI: 10.1016/0013-7944(70)90026-3

Google Scholar

[14] J.M. Melenk, I. Babuška, The partition of unity finite element method: Basic theory and applications, Comput Methods Appl Mech Eng 139 (1996) 289–314.

DOI: 10.1016/s0045-7825(96)01087-0

Google Scholar

[15] G. Collins, Fundamental numerical methods and data analysis, Fundamental Numerical Methods and Data Analysis, by George Collins, II. (1990).

Google Scholar

[16] N. Sukumar, J.E. Dolbow, N. Moës, Extended finite element method in computational fracture mechanics: a retrospective examination, Int J Fract 196 (2015) 189–206.

DOI: 10.1007/s10704-015-0064-8

Google Scholar

[17] J. Dolbow, N. Moës, T. Belytschko, Discontinuous enrichment in finite elements with a partition of unity method, Finite Elements in Analysis and Design 36 (2000) 235–260.

DOI: 10.1016/s0168-874x(00)00035-4

Google Scholar

[18] C.L. Richardson, J. Hegemann, E. Sifakis, J. Hellrung, J.M. Teran, An XFEM method for modeling geometrically elaborate crack propagation in brittle materials, Int J Numer Methods Eng 88 (2011) 1042–1065.

DOI: 10.1002/nme.3211

Google Scholar

[19] T. Hachimi, F. Majid, N. Zekriti, R. Rhanim, H. Rhanim, Improvement of 3D printing polymer simulations considering converting G-code to Abaqus, The International Journal of Advanced Manufacturing Technology 131 (2024) 5193–5208.

DOI: 10.1007/s00170-024-13300-9

Google Scholar

[20] I. Babuška, J.M. Melenk, The partition of unity method, Int J Numer Methods Eng 40 (1997) 727–758.

DOI: 10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.3.co;2-e

Google Scholar

[21] N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int J Numer Methods Eng 46 (1999) 131–150.

DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.3.co;2-a

Google Scholar

[22] E. Wyart, D. Coulon, M. Duflot, T. Pardoen, J.F. Remacle, F. Lani, A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures, Int J Numer Methods Eng 72 (2007) 757–779.

DOI: 10.1002/nme.2029

Google Scholar

[23] M. Duflot, The extended finite element method in thermoelastic fracture mechanics, Int J Numer Methods Eng 74 (2008) 827–847.

DOI: 10.1002/nme.2197

Google Scholar

[24] B. Dompierre, M. Mesbah, E. Wyart, Crack propagation methodology under complex loadings, Eng Fract Mech 142 (2015) 287–302.

DOI: 10.1016/j.engfracmech.2015.06.027

Google Scholar

[25] X. Zhao, S.P.A. Bordas, J. Qu, Equilibrium morphology of misfit particles in elastically stressed solids under chemo-mechanical equilibrium conditions, J Mech Phys Solids 81 (2015) 1–21.

DOI: 10.1016/j.jmps.2015.04.008

Google Scholar

[26] R. Duddu, S. Bordas, D. Chopp, B. Moran, A combined extended finite element and level set method for biofilm growth, Int J Numer Methods Eng 74 (2008) 848–870.

DOI: 10.1002/nme.2200

Google Scholar

[27] S. Bordas, B.M.-E.F. Mechanics, undefined 2006, Enriched finite elements and level sets for damage tolerance assessment of complex structures, Elsevier (2006).

DOI: 10.1016/j.engfracmech.2006.01.006

Google Scholar

[28] E. Wyart, D. Coulon, T. Pardoen, J.F. Remacle, F. Lani, Application of the substructured finite element/extended finite element method (S-FE/XFE) to the analysis of cracks in aircraft thin walled structures, Eng Fract Mech 76 (2009) 44–58.

DOI: 10.1016/j.engfracmech.2008.04.025

Google Scholar

[29] N. Sukumar, J.E. Dolbow, N. Moës, Extended finite element method in computational fracture mechanics: a retrospective examination, Int J Fract 196 (2015) 189–206.

DOI: 10.1007/s10704-015-0064-8

Google Scholar

[30] R. Ghandriz, K. Hart, J. Li, Extended finite element method (XFEM) modeling of fracture in additively manufactured polymers, Addit Manuf 31 (2020) 100945.

DOI: 10.1016/j.addma.2019.100945

Google Scholar

[31] M.J. Geiss, N. Boddeti, O. Weeger, K. Maute, M.L. Dunn, Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation, Journal of Mechanical Design 141 (2019).

DOI: 10.1115/1.4041945

Google Scholar

[32] J. Li, S. Yang, D. Li, V. Chalivendra, Numerical and experimental studies of additively manufactured polymers for enhanced fracture properties, Eng Fract Mech 204 (2018) 557–569.

DOI: 10.1016/j.engfracmech.2018.11.001

Google Scholar