[1]
T. Hachimi, N. Naboulsi, F. Majid, R. Rhanim, I. Mrani, H. Rhanim, Design and Manufacturing of a 3D printer filaments extruder, Procedia Structural Integrity 33 (2021) 907–916.
DOI: 10.1016/j.prostr.2021.10.101
Google Scholar
[2]
B. Lu, D. Li, X. Tian, Development Trends in Additive Manufacturing and 3D Printing, Engineering 1 (2015) 85–89.
Google Scholar
[3]
U.M. Dilberoglu, B. Gharehpapagh, U. Yaman, M. Dolen, The Role of Additive Manufacturing in the Era of Industry 4.0, Procedia Manuf 11 (2017) 545–554.
DOI: 10.1016/j.promfg.2017.07.148
Google Scholar
[4]
N. Naboulsi, T. Hachimi, F. Majid, R. Rhanim, N. Zekriti, H. Rhanim, Modeling and control of 3D filament extruder, Procedia Structural Integrity 33 (2021) 989–995.
DOI: 10.1016/j.prostr.2021.10.109
Google Scholar
[5]
H. Taoufik, M. Fatima, R. Hassan, Modeling of the fracture behavior of the 3D Printed polymers using XFEM, Procedia Structural Integrity 47 (2023) 711–722.
DOI: 10.1016/j.prostr.2023.07.048
Google Scholar
[6]
M. Sepahi, H. Abusalma, V. Jovanovic, H. Eisazadeh, M.T. Sepahi, Mechanical properties of 3D-printed parts made of polyethylene terephthalate glycol, Springer 30 (2021) 6851–6861.
DOI: 10.1007/s11665-021-06032-4
Google Scholar
[7]
S. Nasiri, M.R. Khosravani, Applications of data-driven approaches in prediction of fatigue and fracture, Mater Today Commun 33 (2022) 104437.
DOI: 10.1016/j.mtcomm.2022.104437
Google Scholar
[8]
C. Boller, Next generation structural health monitoring and its integration into aircraft design, Https://Doi.Org/10.1080/00207720050197730 31 (2010) 1333–1349.
Google Scholar
[9]
F. Majid, T. Hachimi, H. Rhanim, R. Rhanim, Delamination effect on the mechanical behavior of 3D printed polymers, Frattura Ed Integrità Strutturale 17 (2023) 26–36.
DOI: 10.3221/igf-esis.63.03
Google Scholar
[10]
N. Zekriti, F. Majid, H. Taoufik, Y. Tounsi, R. Rhanim, I. Mrani, H. Rhanim, Improvement of crack tip position estimation in DIC images by image processing methods, Frattura Ed Integrità Strutturale 17 (2023) 61–71.
DOI: 10.3221/igf-esis.63.06
Google Scholar
[11]
T. Hachimi, N. Zekriti, R. Rhanim, H. Rhanim, F. Majid, Simulation of the Effects of Filament Orientation on Crack Propagation Using Extended Finite Element Method, in: E.M. Elkhattabi, M. Boutahir, K. Termentzidis, K. Nakamura, A. Rahmani (Eds.), Advanced Materials for Sustainable Energy and Engineering, Springer Nature Switzerland, Cham, 2024: p.469–474.
DOI: 10.1007/978-3-031-57022-3_57
Google Scholar
[12]
L. Banks-Sills, D. Sherman, Comparison of methods for calculating stress intensity factors with quarter-point elements, Int J Fract 32 (1986) 127–140.
DOI: 10.1007/bf00019788
Google Scholar
[13]
S.K. Chan, I.S. Tuba, W.K. Wilson, On the finite element method in linear fracture mechanics, Eng Fract Mech 2 (1970) 1–17.
DOI: 10.1016/0013-7944(70)90026-3
Google Scholar
[14]
J.M. Melenk, I. Babuška, The partition of unity finite element method: Basic theory and applications, Comput Methods Appl Mech Eng 139 (1996) 289–314.
DOI: 10.1016/s0045-7825(96)01087-0
Google Scholar
[15]
G. Collins, Fundamental numerical methods and data analysis, Fundamental Numerical Methods and Data Analysis, by George Collins, II. (1990).
Google Scholar
[16]
N. Sukumar, J.E. Dolbow, N. Moës, Extended finite element method in computational fracture mechanics: a retrospective examination, Int J Fract 196 (2015) 189–206.
DOI: 10.1007/s10704-015-0064-8
Google Scholar
[17]
J. Dolbow, N. Moës, T. Belytschko, Discontinuous enrichment in finite elements with a partition of unity method, Finite Elements in Analysis and Design 36 (2000) 235–260.
DOI: 10.1016/s0168-874x(00)00035-4
Google Scholar
[18]
C.L. Richardson, J. Hegemann, E. Sifakis, J. Hellrung, J.M. Teran, An XFEM method for modeling geometrically elaborate crack propagation in brittle materials, Int J Numer Methods Eng 88 (2011) 1042–1065.
DOI: 10.1002/nme.3211
Google Scholar
[19]
T. Hachimi, F. Majid, N. Zekriti, R. Rhanim, H. Rhanim, Improvement of 3D printing polymer simulations considering converting G-code to Abaqus, The International Journal of Advanced Manufacturing Technology 131 (2024) 5193–5208.
DOI: 10.1007/s00170-024-13300-9
Google Scholar
[20]
I. Babuška, J.M. Melenk, The partition of unity method, Int J Numer Methods Eng 40 (1997) 727–758.
DOI: 10.1002/(sici)1097-0207(19970228)40:4<727::aid-nme86>3.3.co;2-e
Google Scholar
[21]
N. Moës, J. Dolbow, T. Belytschko, A finite element method for crack growth without remeshing, Int J Numer Methods Eng 46 (1999) 131–150.
DOI: 10.1002/(sici)1097-0207(19990910)46:1<131::aid-nme726>3.3.co;2-a
Google Scholar
[22]
E. Wyart, D. Coulon, M. Duflot, T. Pardoen, J.F. Remacle, F. Lani, A substructured FE-shell/XFE-3D method for crack analysis in thin-walled structures, Int J Numer Methods Eng 72 (2007) 757–779.
DOI: 10.1002/nme.2029
Google Scholar
[23]
M. Duflot, The extended finite element method in thermoelastic fracture mechanics, Int J Numer Methods Eng 74 (2008) 827–847.
DOI: 10.1002/nme.2197
Google Scholar
[24]
B. Dompierre, M. Mesbah, E. Wyart, Crack propagation methodology under complex loadings, Eng Fract Mech 142 (2015) 287–302.
DOI: 10.1016/j.engfracmech.2015.06.027
Google Scholar
[25]
X. Zhao, S.P.A. Bordas, J. Qu, Equilibrium morphology of misfit particles in elastically stressed solids under chemo-mechanical equilibrium conditions, J Mech Phys Solids 81 (2015) 1–21.
DOI: 10.1016/j.jmps.2015.04.008
Google Scholar
[26]
R. Duddu, S. Bordas, D. Chopp, B. Moran, A combined extended finite element and level set method for biofilm growth, Int J Numer Methods Eng 74 (2008) 848–870.
DOI: 10.1002/nme.2200
Google Scholar
[27]
S. Bordas, B.M.-E.F. Mechanics, undefined 2006, Enriched finite elements and level sets for damage tolerance assessment of complex structures, Elsevier (2006).
DOI: 10.1016/j.engfracmech.2006.01.006
Google Scholar
[28]
E. Wyart, D. Coulon, T. Pardoen, J.F. Remacle, F. Lani, Application of the substructured finite element/extended finite element method (S-FE/XFE) to the analysis of cracks in aircraft thin walled structures, Eng Fract Mech 76 (2009) 44–58.
DOI: 10.1016/j.engfracmech.2008.04.025
Google Scholar
[29]
N. Sukumar, J.E. Dolbow, N. Moës, Extended finite element method in computational fracture mechanics: a retrospective examination, Int J Fract 196 (2015) 189–206.
DOI: 10.1007/s10704-015-0064-8
Google Scholar
[30]
R. Ghandriz, K. Hart, J. Li, Extended finite element method (XFEM) modeling of fracture in additively manufactured polymers, Addit Manuf 31 (2020) 100945.
DOI: 10.1016/j.addma.2019.100945
Google Scholar
[31]
M.J. Geiss, N. Boddeti, O. Weeger, K. Maute, M.L. Dunn, Combined Level-Set-XFEM-Density Topology Optimization of Four-Dimensional Printed Structures Undergoing Large Deformation, Journal of Mechanical Design 141 (2019).
DOI: 10.1115/1.4041945
Google Scholar
[32]
J. Li, S. Yang, D. Li, V. Chalivendra, Numerical and experimental studies of additively manufactured polymers for enhanced fracture properties, Eng Fract Mech 204 (2018) 557–569.
DOI: 10.1016/j.engfracmech.2018.11.001
Google Scholar