[1]
D. Sivan, S. Zafar, R.V. Rohit, V.R. R., K. Satheeshkumar, V. Raj, K. Moorthy, I.I. Misnon, S. Ramakrishna, R. Jose, Towards circularity of plastics: A materials informatics perspective, Materials Today Sustainability 28 (2024) 101001.
DOI: 10.1016/j.mtsust.2024.101001
Google Scholar
[2]
W. Xu, S. Jambhulkar, Y. Zhu, D. Ravichandran, M. Kakarla, B. Vernon, D.G. Lott, J.L. Cornella, O. Shefi, G. Miquelard-Garnier, Y. Yang, K. Song, 3D printing for polymer/particle-based processing: A review, Composites Part B: Engineering 223 (2021) 109102.
DOI: 10.1016/j.compositesb.2021.109102
Google Scholar
[3]
W. Crupano, B. Adrover-Monserrat, J. Llumà, R. Jerez-Mesa, J.A. Travieso-Rodriguez, Investigating mechanical properties of 3D printed polylactic acid / poly-3-hydroxybutyrate composites. Compressive and fatigue performance, Heliyon 10 (2024).
DOI: 10.1016/j.heliyon.2024.e38066
Google Scholar
[4]
I. Akbar, M. El Hadrouz, M. El Mansori, D. Lagoudas, Toward enabling manufacturing paradigm of 4D printing of shape memory materials: Open literature review, European Polymer Journal 168 (2022) 111106.
DOI: 10.1016/j.eurpolymj.2022.111106
Google Scholar
[5]
S. Krishnan, G.S. Chinnadurai, K. Ravishankar, D. Raghavachari, P. Perumal, Statistical augmentation of polyhydroxybutyrate production by Isoptericola variabilis: Characterization, moulding, in vitro cytocompatibility and biodegradability evaluation, International Journal of Biological Macromolecules 166 (2021) 80–97.
DOI: 10.1016/j.ijbiomac.2020.10.089
Google Scholar
[6]
M.A. Gunning, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites, Polymer Testing 32 (2013) 1603–1611.
DOI: 10.1016/j.polymertesting.2013.10.011
Google Scholar
[7]
A.K. Bledzki, A. Jaszkiewicz, D. Scherzer, Mechanical properties of PLA composites with man-made cellulose and abaca fibres, Composites Part A: Applied Science and Manufacturing 40 (2009) 404–412.
DOI: 10.1016/j.compositesa.2009.01.002
Google Scholar
[8]
H. Long, L. Hu, F. Yang, Q. Cai, Z. Zhong, S. Zhang, L. Guan, D. Xiao, W. Zheng, W. Zhou, Y. Wei, K. Frank, X. Dong, Enhancing the performance of polylactic acid composites through self-assembly lignin nanospheres for fused deposition modeling, Composites Part B: Engineering 239 (2022) 109968.
DOI: 10.1016/j.compositesb.2022.109968
Google Scholar
[9]
N.F. Ab Ghani, M.S.Z. Mat Desa, M. Bijarimi, The evaluation of mechanical properties graphene nanoplatelets reinforced polylactic acid nanocomposites, Materials Today: Proceedings 42 (2021) 283–287.
DOI: 10.1016/j.matpr.2021.01.501
Google Scholar
[10]
J. Cheng, X. Lin, X. Wu, Q. Liu, S. Wan, Y. Zhang, Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract, International Journal of Biological Macromolecules 188 (2021) 678–688.
DOI: 10.1016/j.ijbiomac.2021.07.161
Google Scholar
[11]
N. Ardjoum, N. Chibani, S. Shankar, Y.B. Fadhel, H. Djidjelli, M. Lacroix, Development of antimicrobial films based on poly(lactic acid) incorporated with Thymus vulgaris essential oil and ethanolic extract of Mediterranean propolis, International Journal of Biological Macromolecules 185 (2021) 535–542.
DOI: 10.1016/j.ijbiomac.2021.06.194
Google Scholar
[12]
C. Patiño Vidal, E. Velásquez, M.J. Galotto, C. López de Dicastillo, Development of an antibacterial coaxial bionanocomposite based on electrospun core/shell fibers loaded with ethyl lauroyl arginate and cellulose nanocrystals for active food packaging, Food Packaging and Shelf Life 31 (2022) 100802.
DOI: 10.1016/j.fpsl.2021.100802
Google Scholar
[13]
S. Parhi, S. Pal, P. Tripathy, A. Das, A. Mukherjee, S. Pattanayak, D. Kumar, P. Ghosh, Preparation and characterization of mangiferin-loaded polylactic acid nanofiber mat with antioxidant and anti-browning properties for the development of food packaging products, International Journal of Biological Macromolecules 285 (2025) 138266.
DOI: 10.1016/j.ijbiomac.2024.138266
Google Scholar
[14]
S. Mariño-Cortegoso, M. Stanzione, M.A. Andrade, C. Restuccia, A. Rodríguez-Bernaldo de Quirós, G.G. Buonocore, C.H. Barbosa, F. Vilarinho, A.S. Silva, F. Ramos, K. Khwaldia, R. Sendón, L. Barbosa-Pereira, Development of active films utilizing antioxidant compounds obtained from tomato and lemon by-products for use in food packaging, Food Control 140 (2022) 109128.
DOI: 10.1016/j.foodcont.2022.109128
Google Scholar
[15]
D. Fischer, C. Eßbach, R. Schönherr, D. Dietrich, D. Nickel, Improving inner structure and properties of additive manufactured amorphous plastic parts: The effects of extrusion nozzle diameter and layer height, Additive Manufacturing 51 (2022) 102596.
DOI: 10.1016/j.addma.2022.102596
Google Scholar
[16]
B. Akhoundi, R. Ouzah, Experimental and numerical investigation of rotating bending fatigue of polylactic acid 3D printed parts by an extrusion-based additive manufacturing method, Journal of Engineering Research 12 (2024) 539–550.
DOI: 10.1016/j.jer.2023.07.006
Google Scholar
[17]
H.J. O'Connor, D.P. Dowling, Evaluation of the influence of low pressure additive manufacturing processing conditions on printed polymer parts, Additive Manufacturing 21 (2018) 404–412.
DOI: 10.1016/j.addma.2018.04.007
Google Scholar
[18]
R. Khalaj, A.G. Tabriz, M.I. Okereke, D. Douroumis, 3D printing advances in the development of stents, International Journal of Pharmaceutics 609 (2021) 121153.
DOI: 10.1016/j.ijpharm.2021.121153
Google Scholar
[19]
P. Han, A. Tofangchi, S. Zhang, A. Desphande, K. Hsu, Effect of in-process laser interface heating on strength isotropy of extrusion-based additively manufactured PEEK, Procedia Manufacturing 48 (2020) 737–742.
DOI: 10.1016/j.promfg.2020.05.107
Google Scholar
[20]
J. Qiao, Y. Li, L. Li, Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic (FRTP) composites, Additive Manufacturing 30 (2019) 100926.
DOI: 10.1016/j.addma.2019.100926
Google Scholar
[21]
S. Safaee, M. Schock, E.B. Joyee, Y. Pan, R.K. Chen, Field-assisted additive manufacturing of polymeric composites, Additive Manufacturing 51 (2022) 102642.
DOI: 10.1016/j.addma.2022.102642
Google Scholar
[22]
M. Azadi, A. Dadashi, S. Dezianian, M. Kianifar, S. Torkaman, M. Chiyani, High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing, Forces in Mechanics 3 (2021) 100016.
DOI: 10.1016/j.finmec.2021.100016
Google Scholar
[23]
H. Nasiri, A. Dadashi, M. Azadi, Machine learning for fatigue lifetime predictions in 3D-printed polylactic acid biomaterials based on interpretable extreme gradient boosting model, Materials Today Communications 39 (2024) 109054.
DOI: 10.1016/j.mtcomm.2024.109054
Google Scholar
[24]
F. Fereydoonpour, S. Dezianian, M. Azadi, Shape memory recovery in polylactic acid and thermoplastic polyurethane bi-material metamaterials fabricated by additive manufacturing under fatigue testing, Polymer Testing 147 (2025) 108802.
DOI: 10.1016/j.polymertesting.2025.108802
Google Scholar
[25]
M. Talati-Ahmad, S. Dezianian, M. Azadi, A. Ghoddosian, Metamaterial structure impacts on stress and bending fatigue lifetime of additive-manufactured 3D-printed PLA specimens, Journal of Engineering Research (2024).
DOI: 10.1016/j.jer.2024.12.011
Google Scholar
[26]
E. Khedri, H. reza Karimi, M.R.M. Aliha, N. Nazemzadeh, B. Talebi, R. Aleali, Tensile, flexural, and mode-I cracking behavior of interpenetrating phase composites (IPC), developed using additively manufactured PLA-based structures with different infill densities and epoxy resin polymer as matrix, Results in Engineering 22 (2024) 102162.
DOI: 10.1016/j.rineng.2024.102162
Google Scholar
[27]
F.Z. Hosseini, M. Kianifar, M. Azadi, Impact of biological environment on bending fatigue lifetime in additive-manufactured polylactic acid fabricated by 3D-printing, Polymer Testing 138 (2024) 108562.
DOI: 10.1016/j.polymertesting.2024.108562
Google Scholar
[28]
H. Long, L. Hu, F. Yang, Q. Cai, Z. Zhong, S. Zhang, L. Guan, D. Xiao, W. Zheng, W. Zhou, Y. Wei, K. Frank, X. Dong, Enhancing the performance of polylactic acid composites through self-assembly lignin nanospheres for fused deposition modeling, Composites Part B: Engineering 239 (2022) 109968.
DOI: 10.1016/j.compositesb.2022.109968
Google Scholar
[29]
N. Vidakis, M. Petousis, N. Mountakis, C.N. David, D. Sagris, S.C. Das, Thermomechanical response of thermoplastic polyurethane used in MEX additive manufacturing over repetitive mechanical recycling courses, Polymer Degradation and Stability 207 (2023) 110232.
DOI: 10.1016/j.polymdegradstab.2022.110232
Google Scholar
[30]
S. Mohammadalinejhad, H. Almasi, M. Esmaiili, Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films, Materials Chemistry and Physics 268 (2021) 124719.
DOI: 10.1016/j.matchemphys.2021.124719
Google Scholar
[31]
S. Dodange, H. Shekarchizadeh, M. Kadivar, Development and characterization of antioxidant bilayer film based on poly lactic acid-bitter vetch (Vicia ervilia) seed protein incorporated with Pistacia terebinthus extract for active food packaging, Current Research in Food Science 7 (2023) 100613.
DOI: 10.1016/j.crfs.2023.100613
Google Scholar
[32]
M. Musioł, J. Rydz, H. Janeczek, A. Kordyka, J. Andrzejewski, T. Sterzyński, S. Jurczyk, M. Cristea, K. Musioł, M. Kampik, M. Kowalczuk, (Bio)degradable biochar composites – Studies on degradation and electrostatic properties, Materials Science and Engineering: B 275 (2022) 115515.
DOI: 10.1016/j.mseb.2021.115515
Google Scholar
[33]
B.P. Chang, A. Rodriguez-Uribe, A.K. Mohanty, M. Misra, A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity, Renewable and Sustainable Energy Reviews 152 (2021) 111666.
DOI: 10.1016/j.rser.2021.111666
Google Scholar