Advanced Biodegradable Polymer Materials and Additive Manufacturing

Article Preview

Abstract:

This comprehensive review examines the intersection of biodegradable polymer science and advanced additive manufacturing technologies, synthesizing current knowledge across material development, processing techniques, property enhancement, and applications. The urgent need to address plastic pollution through sustainable alternatives has accelerated research into biodegradable polymers, particularly polylactic acid (PLA) and polyhydroxybutyrate (PHB), which offer promising combinations of mechanical performance and environmental benefits. This article analyzes production methodologies, composite formation strategies, and novel functionalization approaches that enhance mechanical, thermal, and functional properties of these materials. The review explores how additive manufacturing techniques—from material extrusion to vat photopolymerization—have revolutionized the processing of biodegradable polymers, enabling complex geometries and tailored properties unachievable through conventional methods. Advanced manufacturing approaches including field-assisted printing, ultrasonic enhancement, and low-pressure processing are evaluated for their ability to overcome inherent limitations in printed parts. Starting with technologies like 4D printing, the article pays serious attention to the use of shape-memory and stimuli-responsive materials to fabricate dynamic structures that undergo predetermined transformations. The article further explores various applications in the fields of biomedical devices, food packaging, structural components, and consumer goods, discussing both present-day applications and possible future ones. This review covers mechanical performance, biodegradation phenomena, and processing alternatives to provide a broad perspective of the present and future trajectory of biodegradable polymer research to aid researchers, engineers, and industry practitioners aiming toward truly sustainable material solutions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-124

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Sivan, S. Zafar, R.V. Rohit, V.R. R., K. Satheeshkumar, V. Raj, K. Moorthy, I.I. Misnon, S. Ramakrishna, R. Jose, Towards circularity of plastics: A materials informatics perspective, Materials Today Sustainability 28 (2024) 101001.

DOI: 10.1016/j.mtsust.2024.101001

Google Scholar

[2] W. Xu, S. Jambhulkar, Y. Zhu, D. Ravichandran, M. Kakarla, B. Vernon, D.G. Lott, J.L. Cornella, O. Shefi, G. Miquelard-Garnier, Y. Yang, K. Song, 3D printing for polymer/particle-based processing: A review, Composites Part B: Engineering 223 (2021) 109102.

DOI: 10.1016/j.compositesb.2021.109102

Google Scholar

[3] W. Crupano, B. Adrover-Monserrat, J. Llumà, R. Jerez-Mesa, J.A. Travieso-Rodriguez, Investigating mechanical properties of 3D printed polylactic acid / poly-3-hydroxybutyrate composites. Compressive and fatigue performance, Heliyon 10 (2024).

DOI: 10.1016/j.heliyon.2024.e38066

Google Scholar

[4] I. Akbar, M. El Hadrouz, M. El Mansori, D. Lagoudas, Toward enabling manufacturing paradigm of 4D printing of shape memory materials: Open literature review, European Polymer Journal 168 (2022) 111106.

DOI: 10.1016/j.eurpolymj.2022.111106

Google Scholar

[5] S. Krishnan, G.S. Chinnadurai, K. Ravishankar, D. Raghavachari, P. Perumal, Statistical augmentation of polyhydroxybutyrate production by Isoptericola variabilis: Characterization, moulding, in vitro cytocompatibility and biodegradability evaluation, International Journal of Biological Macromolecules 166 (2021) 80–97.

DOI: 10.1016/j.ijbiomac.2020.10.089

Google Scholar

[6] M.A. Gunning, L.M. Geever, J.A. Killion, J.G. Lyons, C.L. Higginbotham, Mechanical and biodegradation performance of short natural fibre polyhydroxybutyrate composites, Polymer Testing 32 (2013) 1603–1611.

DOI: 10.1016/j.polymertesting.2013.10.011

Google Scholar

[7] A.K. Bledzki, A. Jaszkiewicz, D. Scherzer, Mechanical properties of PLA composites with man-made cellulose and abaca fibres, Composites Part A: Applied Science and Manufacturing 40 (2009) 404–412.

DOI: 10.1016/j.compositesa.2009.01.002

Google Scholar

[8] H. Long, L. Hu, F. Yang, Q. Cai, Z. Zhong, S. Zhang, L. Guan, D. Xiao, W. Zheng, W. Zhou, Y. Wei, K. Frank, X. Dong, Enhancing the performance of polylactic acid composites through self-assembly lignin nanospheres for fused deposition modeling, Composites Part B: Engineering 239 (2022) 109968.

DOI: 10.1016/j.compositesb.2022.109968

Google Scholar

[9] N.F. Ab Ghani, M.S.Z. Mat Desa, M. Bijarimi, The evaluation of mechanical properties graphene nanoplatelets reinforced polylactic acid nanocomposites, Materials Today: Proceedings 42 (2021) 283–287.

DOI: 10.1016/j.matpr.2021.01.501

Google Scholar

[10] J. Cheng, X. Lin, X. Wu, Q. Liu, S. Wan, Y. Zhang, Preparation of a multifunctional silver nanoparticles polylactic acid food packaging film using mango peel extract, International Journal of Biological Macromolecules 188 (2021) 678–688.

DOI: 10.1016/j.ijbiomac.2021.07.161

Google Scholar

[11] N. Ardjoum, N. Chibani, S. Shankar, Y.B. Fadhel, H. Djidjelli, M. Lacroix, Development of antimicrobial films based on poly(lactic acid) incorporated with Thymus vulgaris essential oil and ethanolic extract of Mediterranean propolis, International Journal of Biological Macromolecules 185 (2021) 535–542.

DOI: 10.1016/j.ijbiomac.2021.06.194

Google Scholar

[12] C. Patiño Vidal, E. Velásquez, M.J. Galotto, C. López de Dicastillo, Development of an antibacterial coaxial bionanocomposite based on electrospun core/shell fibers loaded with ethyl lauroyl arginate and cellulose nanocrystals for active food packaging, Food Packaging and Shelf Life 31 (2022) 100802.

DOI: 10.1016/j.fpsl.2021.100802

Google Scholar

[13] S. Parhi, S. Pal, P. Tripathy, A. Das, A. Mukherjee, S. Pattanayak, D. Kumar, P. Ghosh, Preparation and characterization of mangiferin-loaded polylactic acid nanofiber mat with antioxidant and anti-browning properties for the development of food packaging products, International Journal of Biological Macromolecules 285 (2025) 138266.

DOI: 10.1016/j.ijbiomac.2024.138266

Google Scholar

[14] S. Mariño-Cortegoso, M. Stanzione, M.A. Andrade, C. Restuccia, A. Rodríguez-Bernaldo de Quirós, G.G. Buonocore, C.H. Barbosa, F. Vilarinho, A.S. Silva, F. Ramos, K. Khwaldia, R. Sendón, L. Barbosa-Pereira, Development of active films utilizing antioxidant compounds obtained from tomato and lemon by-products for use in food packaging, Food Control 140 (2022) 109128.

DOI: 10.1016/j.foodcont.2022.109128

Google Scholar

[15] D. Fischer, C. Eßbach, R. Schönherr, D. Dietrich, D. Nickel, Improving inner structure and properties of additive manufactured amorphous plastic parts: The effects of extrusion nozzle diameter and layer height, Additive Manufacturing 51 (2022) 102596.

DOI: 10.1016/j.addma.2022.102596

Google Scholar

[16] B. Akhoundi, R. Ouzah, Experimental and numerical investigation of rotating bending fatigue of polylactic acid 3D printed parts by an extrusion-based additive manufacturing method, Journal of Engineering Research 12 (2024) 539–550.

DOI: 10.1016/j.jer.2023.07.006

Google Scholar

[17] H.J. O'Connor, D.P. Dowling, Evaluation of the influence of low pressure additive manufacturing processing conditions on printed polymer parts, Additive Manufacturing 21 (2018) 404–412.

DOI: 10.1016/j.addma.2018.04.007

Google Scholar

[18] R. Khalaj, A.G. Tabriz, M.I. Okereke, D. Douroumis, 3D printing advances in the development of stents, International Journal of Pharmaceutics 609 (2021) 121153.

DOI: 10.1016/j.ijpharm.2021.121153

Google Scholar

[19] P. Han, A. Tofangchi, S. Zhang, A. Desphande, K. Hsu, Effect of in-process laser interface heating on strength isotropy of extrusion-based additively manufactured PEEK, Procedia Manufacturing 48 (2020) 737–742.

DOI: 10.1016/j.promfg.2020.05.107

Google Scholar

[20] J. Qiao, Y. Li, L. Li, Ultrasound-assisted 3D printing of continuous fiber-reinforced thermoplastic (FRTP) composites, Additive Manufacturing 30 (2019) 100926.

DOI: 10.1016/j.addma.2019.100926

Google Scholar

[21] S. Safaee, M. Schock, E.B. Joyee, Y. Pan, R.K. Chen, Field-assisted additive manufacturing of polymeric composites, Additive Manufacturing 51 (2022) 102642.

DOI: 10.1016/j.addma.2022.102642

Google Scholar

[22] M. Azadi, A. Dadashi, S. Dezianian, M. Kianifar, S. Torkaman, M. Chiyani, High-cycle bending fatigue properties of additive-manufactured ABS and PLA polymers fabricated by fused deposition modeling 3D-printing, Forces in Mechanics 3 (2021) 100016.

DOI: 10.1016/j.finmec.2021.100016

Google Scholar

[23] H. Nasiri, A. Dadashi, M. Azadi, Machine learning for fatigue lifetime predictions in 3D-printed polylactic acid biomaterials based on interpretable extreme gradient boosting model, Materials Today Communications 39 (2024) 109054.

DOI: 10.1016/j.mtcomm.2024.109054

Google Scholar

[24] F. Fereydoonpour, S. Dezianian, M. Azadi, Shape memory recovery in polylactic acid and thermoplastic polyurethane bi-material metamaterials fabricated by additive manufacturing under fatigue testing, Polymer Testing 147 (2025) 108802.

DOI: 10.1016/j.polymertesting.2025.108802

Google Scholar

[25] M. Talati-Ahmad, S. Dezianian, M. Azadi, A. Ghoddosian, Metamaterial structure impacts on stress and bending fatigue lifetime of additive-manufactured 3D-printed PLA specimens, Journal of Engineering Research (2024).

DOI: 10.1016/j.jer.2024.12.011

Google Scholar

[26] E. Khedri, H. reza Karimi, M.R.M. Aliha, N. Nazemzadeh, B. Talebi, R. Aleali, Tensile, flexural, and mode-I cracking behavior of interpenetrating phase composites (IPC), developed using additively manufactured PLA-based structures with different infill densities and epoxy resin polymer as matrix, Results in Engineering 22 (2024) 102162.

DOI: 10.1016/j.rineng.2024.102162

Google Scholar

[27] F.Z. Hosseini, M. Kianifar, M. Azadi, Impact of biological environment on bending fatigue lifetime in additive-manufactured polylactic acid fabricated by 3D-printing, Polymer Testing 138 (2024) 108562.

DOI: 10.1016/j.polymertesting.2024.108562

Google Scholar

[28] H. Long, L. Hu, F. Yang, Q. Cai, Z. Zhong, S. Zhang, L. Guan, D. Xiao, W. Zheng, W. Zhou, Y. Wei, K. Frank, X. Dong, Enhancing the performance of polylactic acid composites through self-assembly lignin nanospheres for fused deposition modeling, Composites Part B: Engineering 239 (2022) 109968.

DOI: 10.1016/j.compositesb.2022.109968

Google Scholar

[29] N. Vidakis, M. Petousis, N. Mountakis, C.N. David, D. Sagris, S.C. Das, Thermomechanical response of thermoplastic polyurethane used in MEX additive manufacturing over repetitive mechanical recycling courses, Polymer Degradation and Stability 207 (2023) 110232.

DOI: 10.1016/j.polymdegradstab.2022.110232

Google Scholar

[30] S. Mohammadalinejhad, H. Almasi, M. Esmaiili, Physical and release properties of poly(lactic acid)/nanosilver-decorated cellulose, chitosan and lignocellulose nanofiber composite films, Materials Chemistry and Physics 268 (2021) 124719.

DOI: 10.1016/j.matchemphys.2021.124719

Google Scholar

[31] S. Dodange, H. Shekarchizadeh, M. Kadivar, Development and characterization of antioxidant bilayer film based on poly lactic acid-bitter vetch (Vicia ervilia) seed protein incorporated with Pistacia terebinthus extract for active food packaging, Current Research in Food Science 7 (2023) 100613.

DOI: 10.1016/j.crfs.2023.100613

Google Scholar

[32] M. Musioł, J. Rydz, H. Janeczek, A. Kordyka, J. Andrzejewski, T. Sterzyński, S. Jurczyk, M. Cristea, K. Musioł, M. Kampik, M. Kowalczuk, (Bio)degradable biochar composites – Studies on degradation and electrostatic properties, Materials Science and Engineering: B 275 (2022) 115515.

DOI: 10.1016/j.mseb.2021.115515

Google Scholar

[33] B.P. Chang, A. Rodriguez-Uribe, A.K. Mohanty, M. Misra, A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity, Renewable and Sustainable Energy Reviews 152 (2021) 111666.

DOI: 10.1016/j.rser.2021.111666

Google Scholar