[1]
Lütjering, G., Williams, J.C. and Gysler, A., 2000. Microstructure and mechanical properties of titanium alloys. In Microstructure And Properties Of Materials: (Volume 2) (pp.1-77).
DOI: 10.1142/9789812793959_0001
Google Scholar
[2]
Eshawish, N., Malinov, S., Sha, W. and Walls, P., 2021. Microstructure and mechanical properties of Ti-6Al-4V manufactured by selective laser melting after stress relieving, hot isostatic pressing treatment, and post-heat treatment. Journal of Materials Engineering and Performance, 30, pp.5290-5296.
DOI: 10.1007/s11665-021-05753-w
Google Scholar
[3]
Tao, P., Li, H.X., Huang, B.Y., Hu, Q.D., Gong, S.L. and Xu, Q.Y., 2018. Tensile behavior of Ti-6Al-4V alloy fabricated by selective laser melting: Effects of microstructures and as-built surface quality. China Foundry, 15, pp.243-252.
DOI: 10.1007/s41230-018-8064-8
Google Scholar
[4]
Xometry https://www.xometry.com/resources/materials/all-about-titanium-alloy-6-4/ (Date of access: 16/05/2024).
Google Scholar
[5]
Azo Materials https://www.azom.com/article.aspx?ArticleID=1547 (Date of access: 16/05/2024).
Google Scholar
[6]
Science Info https://scienceinfo.com/titanium-alloys-properties-advantages/#application-of-titanium-alloy (Date of access: 16/05/2024).
Google Scholar
[7]
Total Materia https://www.totalmateria.com/page.aspx?ID=CheckArticle&site=ktn&NM=97 (Date of access: 16/05/2024).
Google Scholar
[8]
Zhang, X.Y., Fang, G., Leeflang, S., Böttger, A.J., Zadpoor, A.A. and Zhou, J., 2018. Effect of subtransus heat treatment on the microstructure and mechanical properties of additively manufactured Ti-6Al-4V alloy. Journal of Alloys and Compounds, 735, pp.1562-1575.
DOI: 10.1016/j.jallcom.2017.11.263
Google Scholar
[9]
Nakatsukasa, T., Ebihara, A., Kimura, S., Maki, K., Nishijo, M., Tokita, D. and Okiji, T., 2021. Comparative evaluation of mechanical properties and shaping performance of heat-treated nickel titanium rotary instruments used in the single-length technique. Dental Materials Journal, 40(3), pp.743-749.
DOI: 10.4012/dmj.2020-255
Google Scholar
[10]
Ivasishin, O.M., Markovsky, P.E., Matviychuk, Y.V. and Semiatin, S.L., 2003. Precipitation and recrystallization behavior of beta titanium alloys during continuous heat treatment. Metallurgical and Materials Transactions A, 34, pp.147-158.
DOI: 10.1007/s11661-003-0216-8
Google Scholar
[11]
Tammas-Williams, S., Withers, P.J., Todd, I. and Prangnell, P.B., 2016. Porosity regrowth during heat treatment of hot isostatically pressed additively manufactured titanium components. Scripta Materialia, 122, pp.72-76.
DOI: 10.1016/j.scriptamat.2016.05.002
Google Scholar
[12]
Galarraga, H., Warren, R.J., Lados, D.A., Dehoff, R.R., Kirka, M.M. and Nandwana, P., 2017. Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Materials Science and Engineering: A, 685, pp.417-428.
DOI: 10.1016/j.msea.2017.01.019
Google Scholar
[13]
Karolus, M. and Panek, J., 2016. Nanostructured Ni–Ti alloys obtained by mechanical synthesis and heat treatment. Journal of Alloys and Compounds, 658, pp.709-715.
DOI: 10.1016/j.jallcom.2015.10.286
Google Scholar
[14]
Bermingham, M.J., Nicastro, L., Kent, D., Chen, Y. and Dargusch, M.S., 2018. Optimising the mechanical properties of Ti-6Al-4V components produced by wire+ arc additive manufacturing with post-process heat treatments. Journal of Alloys and Compounds, 753, pp.247-255.
DOI: 10.1016/j.jallcom.2018.04.158
Google Scholar
[15]
Zhang, Y., Feng, L., Zhang, T., Xu, H. and Li, J., 2021. Heat treatment of additively manufactured Ti-6Al-4V alloy: microstructure and electrochemical properties. Journal of Alloys and Compounds, 888, p.161602.
DOI: 10.1016/j.jallcom.2021.161602
Google Scholar
[16]
Elshaer, R.N. and Ibrahim, K.M., 2020. Effect of cold deformation and heat treatment on microstructure and mechanical properties of TC21 Ti alloy. Transactions of Nonferrous Metals Society of China, 30(5), pp.1290-1299.
DOI: 10.1016/s1003-6326(20)65296-7
Google Scholar
[17]
Wu, S.Q., Lu, Y.J., Gan, Y.L., Huang, T.T., Zhao, C.Q., Lin, J.J., Guo, S. and Lin, J.X., 2016. Microstructural evolution and microhardness of a selective-laser-melted Ti–6Al–4V alloy after post heat treatments. Journal of Alloys and Compounds, 672, pp.643-652.
DOI: 10.1016/j.jallcom.2016.02.183
Google Scholar
[18]
Yan, X., Yin, S., Chen, C., Huang, C., Bolot, R., Lupoi, R., Kuang, M., Ma, W., Coddet, C., Liao, H. and Liu, M., 2018. Effect of heat treatment on the phase transformation and mechanical properties of Ti6Al4V fabricated by selective laser melting. Journal of Alloys and Compounds, 764, pp.1056-1071.
DOI: 10.1016/j.jallcom.2018.06.076
Google Scholar
[19]
Semiatin, S.L., Lehner, T.M., Miller, J.D., Doherty, R.D. and Furrer, D.U., 2007. Alpha/beta heat treatment of a titanium alloy with a nonuniform microstructure. Metallurgical and Materials Transactions A, 38, pp.910-921.
DOI: 10.1007/s11661-007-9088-7
Google Scholar
[20]
Mora-Sanchez, H., Collado-Vian, M., Mohedano, M., Arrabal, R. and Matykina, E., 2024. Corrosion of an Additively Manufactured Ti6Al4V Alloy in Saline and Acidic Media. Materials, 17(3), p.712.
DOI: 10.3390/ma17030712
Google Scholar
[21]
Azahra, S.A., Damisih, D., Kozin, M., Fitriani, D.A., Puranto, P., Jujur, I.N., Prajitno, D.H., Ulfah, I.M., Hanafi, R., Saudi, A.U. and Suwondo, K.P., 2024, June. The Effect of Solution Treatment Temperature on Hardness, Microstructure, and Corrosion Resistance of Ti-6Al-4V ELI. In Defect and Diffusion Forum (Vol. 433, pp.3-11). Trans Tech Publications Ltd.
DOI: 10.4028/p-7es1pj
Google Scholar
[22]
Jujur, I.N., Sah, J., Agustanhakri, A., Triwibowo, B., Mustika, T., Setyadi, I., Damisih, D., Marchel, P. and Prajitno, D.H., 2024, February. The effect of aging temperature on hardness properties and corrosion resistance of casted Ti-6Al-4V ELI. In AIP Conference Proceedings (Vol. 3003, No. 1). AIP Publishing.
DOI: 10.1063/5.0186577
Google Scholar
[23]
Wang, L., Feng, C., Liu, H., Yi, D., Jiang, L. and Feng, Y., 2019. Revealing the role of Ru in improving corrosion resistance of titanium alloys in HCl solution. Heat Treatment and Surface Engineering, 1(3-4), pp.97-108.
DOI: 10.1080/25787616.2020.1743038
Google Scholar
[24]
Thorhallsson, A.I. and Karlsdottir, S.N., 2021. Corrosion behaviour of titanium alloy and carbon steel in a high-temperature, single and mixed-phase, simulated geothermal environment containing H2S, CO2 and HCl. Corrosion and Materials Degradation, 2(2), pp.190-209.
DOI: 10.3390/cmd2020011
Google Scholar
[25]
AZO MATERIALS. https://www.azom.com/article.aspx?ArticleID=1240#:~:text=Titanium%20provides%20moderate%20resistance%20to,in%20temperature%20and%20acid%20concentration. (Date of access: 23/02/2024).
Google Scholar
[26]
Dewangan, S., Kulkarni, A.R., Varshney, R. and Reddy, P., 2024. Mechanical Properties and Microstructure of Ti–6Al–4V Alloy upon Exposure to High Heat and Chemical Quenching. Journal of The Institution of Engineers (India): Series D, pp.1-9.
DOI: 10.1007/s40033-024-00690-z
Google Scholar
[27]
Han, J., Gao, M., Yu, Y., Lu, X., Blawert, C., Wang, H., Jiang, Z., Zhang, D., Jiang, Y., Hu, J. and Zheludkevich, M.L., 2023. Improving corrosion resistance of Ti alloy in hydrochloric acid by embedding TiC/TiB and Y2O3 ceramic nano-particles. Corrosion Science, 215, p.111013.
DOI: 10.1016/j.corsci.2023.111013
Google Scholar