Formation Mechanism of Dense and Uniform Structure during Tailor Welding of Aluminum Foam Structure Preform

Article Preview

Abstract:

To address the long cycle, high cost, and low efficiency of traditional Aluminum Foam Sandwich preform preparation, this study employs Friction Stir Welding to fabricate preforms with uniform powder mixing. Integrated experimental-simulation approaches reveal the formation mechanism. Temperature field analysis via infrared thermography and Fluent simulation confirms a peak temperature of 522°C at 2000 r/min rotation speed, generating an 85°C/mm thermal gradient and expanding the >450°C zone to 1.8 times the shoulder diameter. Concurrently, flow field modeling demonstrates intensified vortex flow at 2000 r/min, with tracer particles verifying uniform TiH₂/Al₂O₃ dispersion and onion ring radius expansion under 50 mm/min welding speed. Microstructural characterization identifies optimal joint quality through refined nugget zone grains averaging 1.3 μm and porosity below 2% at parameters of 2000 r/min rotation speed, 50 mm/min welding speed, 3 mm spacing, and 0.1 mm reduction. These results establish a methodology for regulating preform structural uniformity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

9-16

Citation:

Online since:

January 2026

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2026 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Banhart, J. Manufacture, characterization and application of cellular metals and metal foams. Prog. Mater. Sci., 2001, 46: 559-632

DOI: 10.1016/S0079-6425(00)00002-5

Google Scholar

[2] Banhart, J., Seeliger, H.W. Recent trends in aluminum foam sandwich technology. Adv. Eng. Mater., 2012, 14(12): 1082–1087

DOI: 10.1002/adem.201100333

Google Scholar

[3] Schwingel, D., Seeliger, H.W., Vecchionacci, C., Alwes, D., Dittrich, J. Aluminium foam sandwich structures for space applications. Acta Astronaut., 2007, 61: 326-330

DOI: 10.2514/6.IAC-06-C2.4.10

Google Scholar

[4] Li Y, Bu H, Ling W. Microstructure evolution and fracture behavior of 2060 AlLi alloy by laser welding with TiC nanoparticle-reinforced filling wire. J. Manuf. Process., 2023, 50: 133-145

DOI: 10.1016/j.jmapro.2023.07.012

Google Scholar

[5] Hassan, A., Alnaser, I.A. A review of different manufacturing methods of metallic foams. ACS Omega, 2024, 9(2): 280−6295

DOI: 10.1021/acsomega.3c08613

Google Scholar

[6] Maleki, K., Alizadeh, A., Hajizamani, M. Compressive strength and wear properties of SiC/Al6061 composites reinforced high contents of SiC fabricated pressure assisted infiltration. Ceram. Int., 2021, 47(2): 2406-2413

DOI: 10.1016/j.ceramint.2020.09.083

Google Scholar

[7] Huang, Y.X., Li, J.H., Long, W.D., Wan, L., Chen, D.L. Strengthening and toughening mechanisms of CNTs/Mg-6Zn composites via friction stir processing. Mater. Sci. Eng. A, 2018, 732: 205-211

DOI: 10.1016/j.msea.2018.07.011

Google Scholar

[8] Liu, Q., Li, K., Zhao, F., Chen, R. Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater. Des., 2013, 45: 343–348

DOI: 10.1016/j.matdes.2012.08.036

Google Scholar

[9] Fan, G.L., Jiang, Y., Tan, Z.Q., Xu, R., Li, Z.Q. Enhanced interfacial bonding and mechanical properties in CNT/Al composites fabricated by flake powder metallurgy. Carbon, 2018, 130: 333-339

DOI: 10.1016/j.carbon.2018.01.037

Google Scholar

[10] Izadi, H., Gerlich, A.P. Distribution and stability of carbon nanotubes during multi-pass friction stir processing of carbon nanotube/aluminum composites. Carbon, 2012, 50(12): 4744-4749

DOI: 10.1016/j.carbon.2012.06.012

Google Scholar