[1]
H. Tervo et al., "Low-temperature toughness properties of 500 MPa offshore steels and their simulated coarse-grained heat-affected zones," Materials Science and Engineering: A, vol. 773, Jan. 2020.
DOI: 10.1016/j.msea.2019.138719
Google Scholar
[2]
M. Gáspár, A. Balogh, and I. Sas, "Physical simulation aided process optimisation aimed sufficient HAZ toughness for quenched and tempered AHSS," in IIW International Conference High-Strength Materials - Challenges and Applications, Helsinki, Finland: IIW, 2015.
Google Scholar
[3]
S. Afkhami et al., "Thermomechanical simulation of the heat-affected zones in welded ultra-high strength steels: Microstructure and mechanical properties," Mater Des, vol. 213, p.110336, Jan. 2022.
DOI: 10.1016/j.matdes.2021.110336
Google Scholar
[4]
M. S. Węglowski, M. Zeman, and M. Lomozik, "Physical Simulation of Weldability of Weldox 1300 Steel," Materials Science Forum, vol. 762, p.551–555, Jul. 2013.
DOI: 10.4028/www.scientific.net/MSF.762.551
Google Scholar
[5]
M. Mičian, J. Winczek, D. Harmaniak, R. Koňár, M. Gucwa, and J. Moravec, "Physical Simulation of Individual Heat-Affected Zones in S960MC Steel," Archives of Metallurgy and Materials, vol. 66, no. 1, p.81–89, Sep. 2020.
DOI: 10.24425/amm.2021.134762
Google Scholar
[6]
R. O. Laitinen, D. A. Porter, L. P. Karjalainen, P. Leiviskä, and J. Kömi, "Physical Simulation for Evaluating Heat-Affected Zone Toughness of High and Ultra-High Strength Steels," Materials Science Forum, vol. 762, p.711–716, Jul. 2013.
DOI: 10.4028/www.scientific.net/MSF.762.711
Google Scholar
[7]
R. Celin, J. Burja, and G. Kosec, "A comparison of as-welded and simulated heat affected zone (HAZ) microstructures," Materiali in tehnologije, vol. 50, no. 3, p.455–460, Jun. 2016.
DOI: 10.17222/mit.2016.006
Google Scholar
[8]
L. Lan, C. Qiu, D. Zhao, X. Gao, and L. Du, "Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel," Materials Science and Engineering: A, vol. 529, no. 1, p.192–200, 2011.
DOI: 10.1016/j.msea.2011.09.017
Google Scholar
[9]
H. Terasaki, Y. Miyahara, M. Ohata, K. Moriguchi, Y. Tomio, and K. Hayashi, "Visualization of Microstructural Factor Resisting the Cleavage-Crack Propagation in the Simulated Heat-Affected Zone of Bainitic Steel," Metallurgical and Materials Transactions A, vol. 46, no. 12, p.5489–5493, 2015.
DOI: 10.1007/s11661-015-3167-y
Google Scholar
[10]
Z. Shi et al., "Effect of nitrogen on the microstructures and mechanical properties in simulated CGHAZ of vanadium microalloyed steel varied with different heat inputs," Materials Science and Engineering: A, vol. 649, p.270–281, Jan. 2016.
DOI: 10.1016/j.msea.2015.09.056
Google Scholar
[11]
A. Lambert-Perlade, A. F. Gourgues, J. Besson, T. Sturel, and A. Pineau, "Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of a high-strength low alloy steel," Metall Mater Trans A Phys Metall Mater Sci, vol. 35, no. 13, p.1039–1053, 2004.
DOI: 10.1007/s11661-004-1007-6
Google Scholar
[12]
Q. Ding, T. Wang, Z. Shi, Q. Wang, Q. Wang, and F. Zhang, "Effect of welding heat input on the microstructure and toughness in simulated CGHAZ of 800 MPa-Grade steel for hydropower penstocks," Metals (Basel), vol. 7, no. 4, Apr. 2017.
DOI: 10.3390/met7040115
Google Scholar
[13]
J. Wang, Y. F. Shen, W. Y. Xue, N. Jia, and R. D. K. Misra, "The significant impact of introducing nanosize precipitates and decreased effective grain size on retention of high toughness of simulated heat affected zone (HAZ)," Materials Science and Engineering: A, vol. 803, Jan. 2021.
DOI: 10.1016/j.msea.2020.140484
Google Scholar
[14]
X. Wang, C. Wang, J. Kang, G. Wang, D. Misra, and G. Yuan, "Relationship Between Impact Toughness and Microstructure for the As-Rolled and Simulated HAZ of Low-Carbon Steel Containing Ti-Ca Oxide Particles," Metall Mater Trans A Phys Metall Mater Sci, vol. 51, no. 6, p.2927–2938, Jun. 2020.
DOI: 10.1007/s11661-020-05753-w
Google Scholar
[15]
G. Huang, X. L. Wan, and K. M. Wu, "Effect of Cr Content on Microstructure and Impact Toughness in the Simulated Coarse-Grained Heat-Affected Zone of High-Strength Low-Alloy Steels," Steel Res Int, vol. 87, no. 11, p.1426–1434, Nov. 2016.
DOI: 10.1002/srin.201500424
Google Scholar
[16]
H. Tervo et al., "Physical simulation of heat-affected zones in a weld metal used with 500 MPa offshore steel," in Proceedings of SIMS EUROSIM 2024, E. Juuso, J. Ruuska, G. Mirlekar, and L. Eriksson, Eds., Linköping Electronic Conference Proceedings, Jan. 2025, p.236–241.
DOI: 10.3384/ecp212.033
Google Scholar
[17]
M. Gáspár, J. Kovács, J. Sainio, H. Tervo, V. Javaheri, and A. Kaijalainen, "Physical simulation-based analysis of multipass welding in S500 shipbuilding steel," Welding in the World, Dec. 2024.
DOI: 10.1007/s40194-024-01908-0
Google Scholar
[18]
Y. Kang, G. Park, S. Jeong, and C. Lee, "Correlation Between Microstructure and Low-Temperature Impact Toughness of Simulated Reheated Zones in the Multi-pass Weld Metal of High-Strength Steel," Metallurgical and Materials Transactions A, vol. 49, no. 1, p.177–186, Jan. 2018.
DOI: 10.1007/s11661-017-4384-3
Google Scholar
[19]
S. Nellikode et al., "Effect of microstructural heterogeneities on variability in low-temperature impact toughness in multi-pass weld metal of 420 MPa offshore engineering steel," Welding in the World, vol. 67, no. 7, p.1679–1693, Jul. 2023.
DOI: 10.1007/s40194-023-01521-7
Google Scholar
[20]
Z. Xiong, S. Liu, X. Wang, C. Shang, X. Li, and R. D. K. Misra, "The contribution of intragranular acicular ferrite microstructural constituent on impact toughness and impeding crack initiation and propagation in the heat-affected zone (HAZ) of low-carbon steels," Materials Science and Engineering: A, vol. 636, p.117–123, Jun. 2015.
DOI: 10.1016/j.msea.2015.03.090
Google Scholar
[21]
Z. Shi, T. Pan, Y. Li, X. Luo, and F. Chai, "Mechanism of BN-Promoting Acicular Ferrite Nucleation to Improve Heat-Affected Zone Toughness of V-N-Ti Microalloyed Offshore Steel," Materials, vol. 15, no. 4, Feb. 2022.
DOI: 10.3390/ma15041420
Google Scholar
[22]
H. Homma, S. Ohkita, S. Matsuda, and K. Yamamoto, "Improvement of HAZ in HSLA steel by Introducing finely dispersed Ti-Oxide," Welding Research Supplement, p.301–309, 1987.
Google Scholar
[23]
H. Tervo et al., "Characterization of coarse-grained heat-affected zones in al and ti-deoxidized offshore steels," Metals (Basel), vol. 10, no. 8, p.1–18, Aug. 2020.
DOI: 10.3390/met10081096
Google Scholar
[24]
H. Tervo et al., "Comparison of impact toughness in simulated coarse-grained heat-affected zone of al-deoxidized and ti-deoxidized offshore steels," Metals (Basel), vol. 11, no. 11, Nov. 2021.
DOI: 10.3390/met11111783
Google Scholar
[25]
D. Loder, S. K. Michelic, and C. Bernhard, "Acicular Ferrite Formation and Its Influencing Factors-A Review," Journal of Materials Science Research, vol. 6, no. 1, p.24, Dec. 2016.
DOI: 10.5539/jmsr.v6n1p24
Google Scholar
[26]
D. S. Sarma, A. V. Karasev, and P. G. Jönsson, "On the Role of Non-metallic Inclusions in the Nucleation of Acicular Ferrite in Steels," ISIJ International, vol. 49, no. 7, p.1063–1074, 2009.
DOI: 10.2355/isijinternational.49.1063
Google Scholar
[27]
T. Alatarvas, "Evolution of inclusion population in calcium treated ultra-high strength steels : novel applications of sample data treatment," Dissertation, University of Oulu, 2018.
Google Scholar
[28]
M. Ali, T. Alatarvas, and J. Kömi, "Impact of niobium addition and non-metallic inclusions' characteristics on the microstructure and mechanical properties of low-carbon CrNiMnMoB ultrahigh-strength steel: A comprehensive investigation," Journal of Materials Research and Technology, vol. 30, p.6133–6153, May 2024.
DOI: 10.1016/j.jmrt.2024.05.002
Google Scholar