[1]
H. Kouefouet, J. S. Mabekou, R. Moutou Pitti and P. K. Talla, On the mode I and II failure of three Cameroonian hardwoods with orthotropy rate evaluation, European Journal of Wood and Wood Products, European Journal of Wood and Wood Products. (2024) 1-19.
DOI: 10.1007/s00107-024-02058-2
Google Scholar
[2]
J. M. Njankouo, P. K. Atchounga, E. Foadieng, G. Kamdjo and P. K. Talla, Investigation of Physical, Mechanical Properties and Long-Term Creep Behavior of Wengé Wood (WW), Applied Engineering. 4(2) (2020) 27-34.
Google Scholar
[3]
U. G. Azeufack, B. Kenmeugne, E. Foadieng, M. Fouotsa, P. K. Talla and M. Fogue, Mechanical Characterization and Measurement of the Damage of Pericopsis elata (Assamela), World Journal of Engineering and Technology. 7(02) (2019) 256.
DOI: 10.4236/wjet.2019.72017
Google Scholar
[4]
R. R. Ngono Mvondo, R. Oum Lissouck, S. Bell and P. Meukam, Investigation on mechanical and thermal properties related to hygroscopicity of two African hardwoods, Wood Material Science and Engineering. 17(6) (2022) 846-857.
DOI: 10.1080/17480272.2021.1967447
Google Scholar
[5]
R. Mvondo, J.C. Damfeu, P. Meukam and Y. Jannot, Influence of moisture content on the thermophysical properties of tropical wood species, Heat and Mass Transfer. 56( 04) (2020) 1365-1378.
DOI: 10.1007/s00231-019-02795-8
Google Scholar
[6]
G. B. Talla Fotsing, E. Foadieng, R. Moutou Pitti and P. K. Talla Pierre Kisito, Triaxial variation of the modulus of elasticity in the thermo-elastic range of six tropical wood species. Wood Material Science and Engineering Wood Material Science and Engineering. 18(1) (2023) 120-129 .
DOI: 10.1080/17480272.2021.1994006
Google Scholar
[7]
H. Kouefouet, G. Bawe, W. C. M. Fouotsa, P. K. Talla, F. J. A. Mukam and E. Foadieng, Probabilistic approach of the failure of Lovoa Trichilioides and Triplochiton Scleroxylon, Wood Research. 63(2) (2018) 273-286.
Google Scholar
[8]
S. Kana, A. B. Biwolé, P. W. Huisken, B. M. Koungang, R. R. Ngono Mvondo, M. Tounkam and E. Njeugna, Physical and mechanical properties of two tropical wood (Detarium macrocarpum and Piptadeniastrum africanum) and their potential as substitutes to traditionally used wood in Cameroon, International Wood Products Journal. (2024) 20-42.
DOI: 10.1177/20426445241233343
Google Scholar
[9]
A. Bonfanti, J. L. Kaplan, G. Charras and A. Kabla, Fractional viscoelastic models for power-law materials, Soft Matter. 16(26) (2020) 6002-6020.
DOI: 10.1039/d0sm00354a
Google Scholar
[10]
P. K. Atchounga, J. M. Njankouo, E. Foadieng and P. K. Talla, Investigation of nonlinear creep behaviour of Millettia laurentii wood through Zener fractional rheological model, International Journal of Materials Sciences. 2(1) (2021) 01-07.
DOI: 10.21203/rs.3.rs-522827/v1
Google Scholar
[11]
L. C. Nguedjio, J. S. Mabekou Takam, R. Moutou Pitti, B. Blaysat, F. Zemtchou, A. K. Mezatio and P. K. Talla, Modeling the nonlinear creep behavior of Entandrophragma cylindricum wood by a fractional derivative model, Mechanics of Time-Dependent Materials. 28(1) (2024) 303-319.[12] L. C. Nguedjio, J. S. Mabekou Takam, R. Moutou Pitti, B. Blaysat, N. Sauvat, J. Gril, F. Zemtchou and P. K. Talla, Analyzing creep-recovery behavior of tropical Entandrophragma cylindricum wood: Traditional and fractional modeling methods, International Journal of Solids and Structures. 306(1) (2025) 113-122.
DOI: 10.1016/j.ijsolstr.2024.113122
Google Scholar
[13]
H. Sun, A. Chang, Y. Zhang and W. Chen, A review on variable-order fractional differential equations : mathematical foundations, physical models, numerical methods and applications, Fractional Calculus and Applied Analysis. 22(1) (2019) 27-59.
DOI: 10.1515/fca-2019-0003
Google Scholar
[14]
K. Yuxiao, M. Shuhua and Z. Yonghong, Variable order fractional grey model and its application. Applied Mathematical Modelling, Applied Mathematical Modelling. 97 (2021) 619-635.
DOI: 10.1016/j.apm.2021.03.059
Google Scholar
[15]
G. Xiang, D. Yin, R. Meng and C. Cao, Predictive model for stress relaxation behavior of glassy polymers based on variable-order fractional calculus, Polymers for Advanced Technologies. 32(2) (2021) 703-713.
DOI: 10.1002/pat.5123
Google Scholar
[16]
G. Xiang, D. Yin, R. Meng and S. Lu, Creep model for natural fiber polymer composites (NFPCs) based on variable order fractional derivatives : simulation and parameter study, Journal of Applied Polymer Science. 137(24) (2020) 48-96.
DOI: 10.1002/app.48796
Google Scholar
[17]
U. G. Azeufack, B. Kenmeugne, E. Foadieng, M. Fouotsa, P. K. Talla and M. Fogue, Contribution to the study of variations of physical properties of Pericopsis elata with respect to different stages of growth, World Journal of Engineering and Technology. 7(02) (2019) 11-20.
DOI: 10.4236/wjet.2019.72017
Google Scholar
[18]
Forest Products Laboratory. Technical Report General Technical Report FPL-GTR-190, U.S. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, WI, USA, (2010).
DOI: 10.15376/frc.1977.1.741
Google Scholar
[19]
Tropix7-Cirad. Tropical species technical sheets (2011).
Google Scholar
[20]
E. Foadieng, C.M. Woutsop, U. Azeufack, P. Talla and M. Fogue, Mechanical Behavior of Pericopsis elata Relative to Age during Growth, Advances in Materials Science and Engineering. 03 (2021) 1-14.
Google Scholar
[21]
A. Krasnobrizha: Modeling hysteresis mechanisms of woven composites using a collaborative elasto-plastic damageable model with fractional derivatives, PhD thesis (Central University of Nantes, France 2015).
Google Scholar
[22]
A. Krasnobrizha, P. Rozycki, P. Cosson, L. Gornet, Modeling of hysteresis mechanisms of woven composites using a collaborative elasto-plastic damageable model with fractional derivatives, Materials and Techniques. 104(4) (2016) 407.
DOI: 10.1016/j.compstruct.2016.09.016
Google Scholar
[23]
M. Hamza: Existence and uniqueness of the solution of an impulsive fractional differential equation of infinite time in Banach space, PhD thesis (Badji Mokhtar University, Algeria 2015).
Google Scholar
[24]
A. Khalouta: Resolution of linear and nonlinear partial differential equations using analytical approaches: extension to cases of fractional order PDEs, PhD thesis (Ferhat Abbas Setif 1 University, Algeria 2019).
DOI: 10.52846/ami.v51i2.1897
Google Scholar
[25]
A. Stankiewicz, Fractional Maxwell model of viscoelastic biological materials, Bio Web of Conferences. volume 10 (2018) 020-32.
DOI: 10.1051/bioconf/20181002032
Google Scholar
[26]
M. Di Paola, G. Alotta, A. Burlon and G. Failla, A novel approach to nonlinear variable-order fractional viscoelasticity, Mathematical, Physical and Engineering Sciences. 378(2172) (2020) 2019-0296.[27] C. F. Lorenzo and T. T. Hartley. Nonlinear Dynamics, 29 -57. (2002).
DOI: 10.1098/rsta.2019.0296
Google Scholar
[28]
Y. Kawada, T. Yajima, and H. Nagahama, Fractional-order derivative and time-dependent viscoelastic behaviour of rocks and minerals, Acta Geophysica. 61 (2013) 1690-1702.
DOI: 10.2478/s11600-013-0153-x
Google Scholar
[29]
G. Xiang, D. Yin, R. Meng, and S. Lu, Creep model for natural fiber polymer composites (NFPCs) based on variable order fractional derivatives : simulation and parameter study, Journal of Applied Polymer Science. 137(24) (2020) 48-96.
DOI: 10.1002/app.48796
Google Scholar
[30]
R. Meng, D. Yin, C. Zhou, and H. Wu, Fractional description of time-dependent mechanical property evolution in materials with strain softening behavior, Applied Mathematical Modelling. 40(1) (2016) 398-406.
DOI: 10.1016/j.apm.2015.04.055
Google Scholar
[31]
H. G. Sun, W. Chen, H. Wei, and Y. Q. Chen, A comparative study of constant-order and variableorder fractional models in characterizing memory property of systems, The European Physical Journal Special Topics. 193(1) (2011) 185-192.
DOI: 10.1140/epjst/e2011-01390-6
Google Scholar