Transient Response of Airport Runway

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 243-244)

Pages:

135-140

Citation:

Online since:

July 2003

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2003 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.D. Achenbach S.P. Keshava and G.Herrmann, Moving load on a plate resting on an elastic half-space, J. Appl. Mech., Vol. 35, pp.910-914, 1967.

DOI: 10.1115/1.3607855

Google Scholar

[2] Michael R. Taher and Edward C. Ting., Dynamic response of plates to moving loads: finite element method, Computers & Structures, Vol. 34, No. 3, pp.509-521, 1990.

DOI: 10.1016/0045-7949(90)90276-8

Google Scholar

[3] G. Pan and S.N. Atluri, Dynamic response of finite sized elastic runways subjected to moving loads : a coupled BEM/FEM approach, International Journal for Numerical Method in Engineering, Vol. 38, pp.3143-3166, (1995)

DOI: 10.1002/nme.1620381808

Google Scholar

[4] G. Pan, H. Okada and S. N. Atluri, Nonlinear transient dynamic analysis of soil-pavement interaction under moving load: a coupled BEM-FEM approach, Engineering Analysis with Boundary element, Vol. 14, pp.99-112, 1994.

DOI: 10.1016/0955-7997(94)90085-x

Google Scholar

[5] W.L. Whittaker and P. Christiano, Dynamic response of a plate on elastic half space, ASCE EM1, 108 pp.133-154, 1982.

DOI: 10.1061/jmcea3.0002790

Google Scholar

[6] Chandraknt S. Desai and John T. Christian, Numerical methods in geotechnical engineering, McGRAW-HILL BOOK COMPANY, (1977)

Google Scholar

[7] P. Tong and J.N. Rossettos, Finite element method, MIT, (1977)

Google Scholar

[8] D. C. Robert, S.M. David and E.P. Michael, Concepts and applications of finite element analysis, John Wiley & Sons, Inc., 1989 v =150m/s, D =0, t =0.06096s -1.E-04 -8.E-05 -6.E-05 -4.E-05 -2.E-05 0.E+00 -11.0 -6.0 -1.0 4.0 9.0 (a) Distance along x direction (m) Deflection (m) 3-D model thick plate-z thick plate3 v =150m/s, t =0.06096s -1.E-04 -8.E-05 -6.E-05 -4.E-05 -2.E-05 0.E+00 -11.0 -6.0 -1.0 4.0 9.0 (b) Distance along x direction (m) Deflection (m) D=0.0 D=0.01 D=0.05 D=0.15 Static solution Figure 1. Deflection of the pavement along y=0, (a) D = 0 and (b) for different damping ratio using the 4-node thick-plate element. v =100m/s -1.E-04 -5.E-05 0.E+00 0.00 0.05 0.10 0.15 0.20 (a) Time (sec) Deflection (m) D=0.0 D=0.01 D=0.05 D=0.15 D =0.1 -5.E-05 -3.E-05 -1.E-05 1.E-05 0.00 0.10 0.20 0.30 0.40 (b) Time (sec) Deflection (m)v=50 m/s v=100m/ s v=150m/ Figure 2. Time history of the deflection at the pavement center: (a) different damping ratios and (b) different taxiing speeds using the 4-node thick-plate element. Figure 3. Stresses near the load point along y = 0 for D = 0, and different element types and displacement compatibility: (a) σx in the pavement, (b) σxz in the pavement and (c) σxz in the foundation. v =150m/s, D =0, t =0.06096s -1.4E+06 -1.0E+06 -6.0E+05 -2.0E+05 2.0E+05 6.0E+05 -11.0 -6.0 -1.0 4.0 9.0 (a) Distance along x direction (m) σσσσx (Pa) 3-D model thick plate-z thick plate3 thin plate-z v =150m/s, D =0, t=0.06096s -1.2E+05 -8.0E+04 -4.0E+04 0.0E+00 4.0E+04 8.0E+04 1.2E+05 -11.0 -6.0 -1.0 4.0 9.0 (b) Distance along x direction (m) xz (Pa) 3-D model thick plate-z thick plate-3 v =150m/s, D=0, t=0.06096s -1.0E+04 -7.5E+03 -5.0E+03 -2.5E+03 0.0E+00 2.5E+03 5.0E+03 7.5E+03 1.0E+04 -11.0 -6.0 -1.0 4.0 9.0 (c) Distance along x direction (m) xz (Pa) thick plate-z thick plate-3 thin plate-z Figure 4. Stress time histories under the load in the pavement using the 4-node thick-plate element and different damping ratios: (a) σx and (b) σxz . Figure 5. Reduction in stresses in the pavement vs. damping ratio: (a) σx, σy, (b) σyz and σxz. -1.4E+06 -1.2E+06 -1.0E+06 -8.0E+05 -6.0E+05 -4.0E+05 -2.0E+05 0.0E+00 0 0.05 0.1 0.15 0.2 (a) Damping ratio Stresses x and y (Pa) v=50 m/sec v=100m/sec v=150m/sec σσσσx σ σ σ σy -1.0E+05 -5.0E+04 0.0E+00 5.0E+04 1.0E+05 1.5E+05 0 0.05 0.1 0.15 0.2 (b) Damping ratio Stresses σσσσxz and σσσσyz (Pa) v=50 m/sec v=100m/sec v=150m/sec σσσσxz σσσσyz v=100m/s -1.6E+05 -1.2E+05 -8.0E+04 -4.0E+04 0.0E+00 4.0E+04 8.0E+04 1.2E+05 0.00 0.05 0.10 0.15 0.20 (b) Time (sec) xz (Pa) D=0.0 D=0.01 D=0.05 D=0.15 v =150m/s, D=0.15, t=0.06096s -8.0E+04 -6.0E+04 -4.0E+04 -2.0E+04 0.0E+00 2.0E+04 4.0E+04 6.0E+04 -11.0 -6.0 -1.0 4.0 9.0 (a) Distance along x direction (m) x (Pa) 3-D model thick plate-z thick plate-3 thin plate-z

Google Scholar