[1]
E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059-2062 (1987).
DOI: 10.1103/physrevlett.58.2059
Google Scholar
[2]
S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486-2489 (1987).
DOI: 10.1103/physrevlett.58.2486
Google Scholar
[3]
M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic Band Structure of Periodic Elastic Composites, Phys. Rev. Lett. 71(13), 2022-2025 (1993).
DOI: 10.1103/physrevlett.71.2022
Google Scholar
[4]
M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites, Phys. Rev. B 49(4), 2313-2322 (1994).
DOI: 10.1103/physrevb.49.2313
Google Scholar
[5]
Tsung-Tsong Wu, Zi-Gui Huang and S. -C. Lin, Surface and bulk waves in two dimensional phononic crystals consisting of materials with general anisotropy, Physical Review (B), to appear (2004).
DOI: 10.1109/ultsym.2004.1417951
Google Scholar
[6]
M. M. Sigalas, N Garcia, Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method, J. Appl. Phys. 87, 3122-3125 (2000).
DOI: 10.1063/1.372308
Google Scholar
[7]
M. Kafesaki, M. M. Sigalas, and N Garcia, Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials, Phys. Rev. Lett. 85(19), 4044-4047 (2000).
DOI: 10.1103/physrevlett.85.4044
Google Scholar
[8]
Madariaga, Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66(3), 639-666 (1976).
Google Scholar
[9]
Virieux, J. and Madariaga, Dynamic faulting studied by a finite difference method, Bull. Seism. Soc. Am. 72(2), 345-369 (1982).
DOI: 10.1785/bssa0720020345
Google Scholar
[10]
Madariaga, Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66(3), 639-666 (1976) Title of Publication (to be inserted by the publisher).
Google Scholar
[11]
J.H. Tong, The research and manufacture of the concrete quality examing system base on the elastic wave, Ph. D dissertation, the Institute of applied mechanics at National Taiwan University, Taiwan(2001).
Google Scholar
[12]
B. Engquist, A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Mathematics of Computation 31(139), 629-651 (1977).
DOI: 10.1090/s0025-5718-1977-0436612-4
Google Scholar
[13]
R. Clayton, B. Engquist, Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations, Bull. Seism. Soc. Am. 67(6), 1529-1540 (1977).
DOI: 10.1785/bssa0670061529
Google Scholar
[14]
G. Mur, Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations, IEEE Transactions on Electromagnetic Compatibility 23(4), 377-382, (1981).
DOI: 10.1109/temc.1981.303970
Google Scholar
[15]
J. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Computational Physics 144, 185-200 (1994).
DOI: 10.1006/jcph.1994.1159
Google Scholar
[16]
W. C. Chew, Q. H. Liu, Perfectly Matched Layers for Elastodynamics: A new Absorbing Boundary Condition, J. Computational Acoustics 4(4), 341-359 (1996).
DOI: 10.1142/s0218396x96000118
Google Scholar