The Study of Acoustic Band Gaps in 2-D Air/Aluminum and Steel/Epoxy Phononic Structure

Article Preview

Abstract:

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 270-273)

Pages:

1127-1134

Citation:

Online since:

August 2004

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2004 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58, 2059-2062 (1987).

DOI: 10.1103/physrevlett.58.2059

Google Scholar

[2] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 58, 2486-2489 (1987).

DOI: 10.1103/physrevlett.58.2486

Google Scholar

[3] M. S. Kushwaha, P. Halevi, L. Dobrzynski, and B. Djafari-Rouhani, Acoustic Band Structure of Periodic Elastic Composites, Phys. Rev. Lett. 71(13), 2022-2025 (1993).

DOI: 10.1103/physrevlett.71.2022

Google Scholar

[4] M. S. Kushwaha, P. Halevi, G. Martinez, L. Dobrzynski, and B. Djafari-Rouhani, Theory of acoustic band structure of periodic elastic composites, Phys. Rev. B 49(4), 2313-2322 (1994).

DOI: 10.1103/physrevb.49.2313

Google Scholar

[5] Tsung-Tsong Wu, Zi-Gui Huang and S. -C. Lin, Surface and bulk waves in two dimensional phononic crystals consisting of materials with general anisotropy, Physical Review (B), to appear (2004).

DOI: 10.1109/ultsym.2004.1417951

Google Scholar

[6] M. M. Sigalas, N Garcia, Theoretical study of three dimensional elastic band gaps with the finite-difference time-domain method, J. Appl. Phys. 87, 3122-3125 (2000).

DOI: 10.1063/1.372308

Google Scholar

[7] M. Kafesaki, M. M. Sigalas, and N Garcia, Frequency Modulation in the Transmittivity of Wave Guides in Elastic-Wave Band-Gap Materials, Phys. Rev. Lett. 85(19), 4044-4047 (2000).

DOI: 10.1103/physrevlett.85.4044

Google Scholar

[8] Madariaga, Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66(3), 639-666 (1976).

Google Scholar

[9] Virieux, J. and Madariaga, Dynamic faulting studied by a finite difference method, Bull. Seism. Soc. Am. 72(2), 345-369 (1982).

DOI: 10.1785/bssa0720020345

Google Scholar

[10] Madariaga, Dynamics of an expanding circular fault, Bull. Seism. Soc. Am. 66(3), 639-666 (1976) Title of Publication (to be inserted by the publisher).

Google Scholar

[11] J.H. Tong, The research and manufacture of the concrete quality examing system base on the elastic wave, Ph. D dissertation, the Institute of applied mechanics at National Taiwan University, Taiwan(2001).

Google Scholar

[12] B. Engquist, A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Mathematics of Computation 31(139), 629-651 (1977).

DOI: 10.1090/s0025-5718-1977-0436612-4

Google Scholar

[13] R. Clayton, B. Engquist, Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations, Bull. Seism. Soc. Am. 67(6), 1529-1540 (1977).

DOI: 10.1785/bssa0670061529

Google Scholar

[14] G. Mur, Absorbing Boundary Conditions for the Finite-Difference Approximation of the Time-Domain Electromagnetic-Field Equations, IEEE Transactions on Electromagnetic Compatibility 23(4), 377-382, (1981).

DOI: 10.1109/temc.1981.303970

Google Scholar

[15] J. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Computational Physics 144, 185-200 (1994).

DOI: 10.1006/jcph.1994.1159

Google Scholar

[16] W. C. Chew, Q. H. Liu, Perfectly Matched Layers for Elastodynamics: A new Absorbing Boundary Condition, J. Computational Acoustics 4(4), 341-359 (1996).

DOI: 10.1142/s0218396x96000118

Google Scholar