Morphology Tailoring of Hydroxyapatite Nanoparticles by Hydrothermal Processing with Amino Acids

Article Preview

Abstract:

Hydroxyapatite (HAp) was synthesized in the presence of a variety of amino acids in order to investigate the effect of amino acid on the morphology of HAp obtained by homogeneous precipitation and hydrothermal treating. In the results of X-ray diffraction analysis, HAp synthesized in the presence of some amino acids showed different crystallinity compared with HAp synthesized in the absence of amino acid. The results of Fourier transform infrared spectroscopy suggested the adsorption of these amino acids on HAp. Microphotographs of transmission electron microscope showed that the size and morphology of HAp adsorbed amino acids changed significantly. Collectively, this study suggests that the morphology and the crystallinity of synthesized HAp are different owing to the variation of amino acids in the synthesizing condition.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

1533-1536

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. De Groot: Bioceramics of calcium phosphate (CRC Press, USA 1983).

Google Scholar

[2] H.A. Lowenstam and S. Weiner: On biomineralization (Oxford University Press, UK 1989).

Google Scholar

[3] R.L. Collins: J. Am. Chem. Sot. Vol. 82 (1960), p.89.

Google Scholar

[4] E. Hayek and H. Newesely: Znorg. Synth. Vol. 7 (1963), p.63. 100nm 50nm 200nm 50nm.

Google Scholar

[5] K. Matsuda, Y. Kaneko, H.J. Fei, K. Fujita and S. Mitsuzawa: Pro. Fat. Sci. Tokai Univ., Vol. 27 (1992), p.73.

Google Scholar

[6] B.O. Fowler: Znorg. Chem. Vol. 13 (1974), p.207.

Google Scholar

[7] Y. Fujishiro, H. Yabuki, K. Kawamura, T. Sato and A. Okuwaki: J. Chem. Tech. Biotechnol. Vol. 57 (1993), p.349.

Google Scholar

[8] A.P. Tomsia, J.S. Moya and F. Guitian: Scrip. Metal. Mater. Vol. 31 (1994), p.95.

Google Scholar

[9] T. Hattori and Y. Iwadate: J. Am. Ceram. Sot. Vol. 73 (1990), p.1803.

Google Scholar

[10] T. Hattori, Y. Iwadate and T. Kato: Advanced Ceramic Materials Vol. 3 (1998), p.427.

Google Scholar

[11] L. Yan, L. Yadong, D. Zhaoxiang, J. Zhuang and S. Xiaoming: Inter. J. Inorg. Mater. Vol. 3 (2001), p.633.

Google Scholar

[12] E.R. Riman, L.S. Wojciech, B. Kullaiah, C. Chunwei, S. Pavel and S.O. Charles: Solid State Ionics Vol. 151 (2002), p.393.

Google Scholar

[13] E. Dalas, P.V. Ioannou and P.G. Koutsoukos: Langmuir Vol. 6 (1990), p.535.

Google Scholar

[14] P. Paschalakis, D.H. Vynios, C.P. Tsiganos, E. Dalas, C. Maniatis and P.G. Koutsoukos: Biochim. Biophys. Acta Vol. 1158 (1993), p.129.

DOI: 10.1016/0304-4165(93)90006-t

Google Scholar

[15] S. Suzuki, M. Ohgaki, M. Ichiyanagi and M. Ozawa: J. Mater. Sci. Lett. Vol. 17 (1998), p.381.

Google Scholar

[16] G. Bernardi, M. Giro and C. Gaillard: Biochim Biophys Acta Vol. 278 (1972), p.409.

Google Scholar

[17] R.W. Romberg, P.G. Wernwss, B.L. Riggs and K.G. Mann: Biochemistry Vol. 25 (1986), p.1176.

Google Scholar