Ceramic Technologies for Anode-Supported Solid Oxide Fuel Cells

Article Preview

Abstract:

One of the most promising technologies for future applications of solide oxide fuel cells (SOFC)is the so-called “anode-supported” configuration: a dense yttria-stabilised zirconia (YSZ) ceramic electrolyte is deposited as a thin film over a porous Ni / YSZ cermet substrate anode, followed by a porous ceramic cathode such as La1-xSrxMnO3 (LSM). In this paper, a short review is made of the current technologies available to achieve this particular architecture, and to optimise the service behaviour. Then, alternative materials and fabrication technologies, as well as their possible impact on performance, are proposed and investigated.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 280-283)

Pages:

419-424

Citation:

Online since:

February 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] K. Choy, W. Bai, S. Charojrochkul and B.C.H. Steele: J. Power Sources Vol. 71 (1998), p.361.

Google Scholar

[2] J. Will, A. Mitterdorfer, C. Kleinlogel, et al.: Solid State Ionics Vol. 131 (2000), p.79.

Google Scholar

[3] A.J. McEvoy: Solid State Ionics Vol. 132 (2000), p.159.

Google Scholar

[4] S.C. Singhal: Solid State Ionics Vol. 135 (2000), p.305.

Google Scholar

[5] S.C. Singhal: Solid State Ionics Vol. 152-153 (2002), p.405.

Google Scholar

[6] M. Dokiya: Solid State Ionics Vol. 152-153 (2002), p.383.

Google Scholar

[7] W.Z. Zhu and S.C. Deevi: Mater. Sci. Eng. A Vol. 362 (2003), p.228.

Google Scholar

[8] A. Weber and E. Ivers-Tiffée: J. Power Sources Vol. 127 (2004), p.273.

Google Scholar

[9] S.P.S. Badwal, F.T. Ciacchi and D. Milosevic: Solid State Ionics Vol. 136-137 (2000), p.91.

Google Scholar

[10] R.S. Gordon: Electrochemical Society Proceedings Vol. 7 (2003), p.141.

Google Scholar

[11] M. Hirano, M. Inagaki, Y. Mizutani, et al.: Solid State Ionics Vol. 133 (2000), p.1.

Google Scholar

[12] S.G. Kim, S.P. Yoon, S.W. Nam, et al.: J. Power Sources Vol. 110 (2002), p.222.

Google Scholar

[13] K. Kobayashi, I. Takahashi, M. Shionoet al.: Solid State Ionics Vol. 152-153 (2002), p.591. Fig. 5: Electrochemical performance of a Ni- YSZ / YSZ / LSM cell at 800°C under 5% H2.

DOI: 10.1016/s0167-2738(02)00359-4

Google Scholar

[14] H.Z. Song, H.B. Wang, S.W. Zha, et al.: Solid State Ionics Vol. 156 (2003), p.249.

Google Scholar

[15] K. Huang and J.B. Goodenough: J. Alloys Compounds Vol. 303-304 (2000), p.454.

Google Scholar

[16] X. Zhang, S. Ohara, H. Okawa, R. Maric and T. Fukui: Solid State Ionics Vol. 139 (2001), p.145.

Google Scholar

[17] T. Fukui, S. Ohara, K. Murata, et al.: J. Power Sources Vol. 106 (2002), p.142.

Google Scholar

[18] A. Ringuedé and J. Fouletier: Solid State Ionics Vol. 139 (2001), p.167.

Google Scholar

[19] S.P. Simner, J.F. Bonnett, N.L. Canfield, et al.: J. Power Sources Vol. 113 (2003), p.1.

Google Scholar

[20] E. Perry Murray, M.J. Sever and S.A. Barnett: Solid State Ionics Vol. 148 (2002), p.27.

Google Scholar

[21] L. Qiu, T. Ichikawa, A. Hirano, et al.: Solid State Ionics Vol. 158 (2003), p.55.

Google Scholar

[22] H.S. Yoon, S.W. Choi, D. Lee and B.H. Kim: J. Power Sources Vol. 93 (2001), p.1.

Google Scholar

[23] T.J. Huang and Y.S. Huang: Mater. Sci. Eng. B Vol. 103 (2003), p.207.

Google Scholar

[24] Y. Liu , W. Rauch , S. Zha and M. Liu: Solid State Ionics Vol. 166 (2004), p.261.

Google Scholar

[25] F. Mauvy, J.M. Bassat, E. Boehm, et al.: Solid State Ionics Vol. 158 (2003), p.17.

Google Scholar

[26] P. Fragnaud, P. Charpentier, D.M. Schleich and C. Lunot: Proc. Second Int. Symp. on New Materials for Fuel Cell and Modern Battery Systems II, (1997) p.119.

Google Scholar

[27] T. Nguyen and E. Djurado: Solid State Ionics Vol. 138 (2001), p.191.

Google Scholar

[28] Z. Lü, L. Pei, T.M. He, et al.: J. Alloys Compo. Vol. 334 (2002), p.299.

Google Scholar

[29] R.J. Gorte, H. Kim and J.M. Vohs: J. Power Sources Vol. 106 (2002), p.10.

Google Scholar

[30] C. Lu, W.L. Worrell, C. Wang, et al.: Solid State Ionics Vol. 152-153 (2002), p.393.

Google Scholar

[31] R.J. Gorte and J.M. Vohs: J. Catalysis Vol. 216 (2003), p.477.

Google Scholar

[32] A. Ringuedé, J.A. Labrincha and J.R. Frade: Solid State Ionics Vol. 141-142 (2001), p.549.

DOI: 10.1016/s0167-2738(01)00744-5

Google Scholar

[33] A. Ringuedé, D. Bronine and J.R. Frade: Electrochimica Acta Vol. 48 (2002), p.437.

Google Scholar

[34] S. McIntosh, J.M. Vohs and R.J. Gorte: Electrochimica Acta Vol. 47 (2002), p.3815.

Google Scholar

[35] X. Huang, Z. Liu, Z. Lu, et al.: J. Phys. Chem. Solids Vol. 64 (2003), p.2379.

Google Scholar

[36] G. Pudmich, B.A. Boukamp, M. Gonzalez-Cuenca, et al.: Solid State Ionics Vol. 135 (2000), p.433.

Google Scholar

[37] P. Vernoux, M. Guillodo, J. Fouletier and A. Hammou: Solid State Ionics Vol. 135 (2000), p.425.

Google Scholar

[38] D.P. Fagg, V.V. Kharton, A.V. Kovalevsky, et al.: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1831.

Google Scholar

[39] J. Sfeir: J. Power Sources Vol. 118 (2003), p.276.

Google Scholar

[40] J.T. S Irvine, D.P. Fagg, J. Labrincha and F.M.B. Marques: Catalysis Today Vol. 38 (1997), p.467.

Google Scholar

[41] S. de Souza, S.J. Visco and L.C. De Jonghe: Solid State Ionics Vol. 98 (1997), p.57.

Google Scholar

[42] U. Anselmi-Tamburini, G. Chiodelli, et al.: Solid State Ionics Vol. 110 (1998), p.35.

Google Scholar

[43] D. Simwonis, H. Thülen, F.J. Dias, et al.: J. Mater. Process. Technol. Vol. 92-93 (1999), p.107.

Google Scholar

[44] M. Marinsek, K. Zupan and J. Macek: J. Power Sources Vol. 86 (2000), p.383.

Google Scholar

[45] Y. Li, Y. Xie, J. Gong, Y. Chen and Z. Zhang: Mater. Sci. Eng. B Vol. 86 (2001), p.119.

Google Scholar

[46] M. Cassir and E. Gourba: Ann. Chim. Sci. Mat. Vol. 26 (2001), p.49.

Google Scholar

[47] J. Van Herle, R. Ihringer, R. Vasquez Cavieres, et al.: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1855.

Google Scholar

[48] Y. Zhang , J. Gao , D. Peng , M. Guangyao and X. Liu: Ceramics International, in press.

Google Scholar

[49] P. Bohac and L. Gauckler: Solid State Ionics Vol. 119 (1999), p.317.

Google Scholar

[50] D. Perednis and L.J. Gauckler: Solid State Ionics Vol. 166 (2004), p.229.

Google Scholar

[51] S.P. Krumdieck, O. Sbaizero, A. Bullert and R. Raj: Surf. Coat. Technol. Vol. 167 (2003), p.226.

Google Scholar

[52] P.K. Srivastava, T. Quach, Y.Y. Duan, et al.: Solid State Ionics Vol. 99 (1997), p.311.

Google Scholar

[53] B. Hobein, F. Tietz, D. Stöver, et al.: J. Eur. Ceram. Soc. Vol. 21 (2001), p.1843.

Google Scholar

[54] A. Nagata and H. Okayama: Vacuum Vol. 66 (2002), p.523.

Google Scholar

[55] B. Hobein, F. Tietz, D. Stöver and E.W. Kreutz: J. Power Sources Vol. 105 (2002), p.239.

Google Scholar

[56] C.J. Li, C.X. Li and X.J. Ning: Vacuum Vol. 73 (2004), p.699.

Google Scholar

[57] S.J. Visco, C.P. Jacobson, I. Villareal, et al.: Electrochem. Soc. Proc. Vol. 7 (2003), p.1041.

Google Scholar