Fabrication of Heat-Resistant Silicon Carbide Ceramics by Controlling Intergranular Phase

Article Preview

Abstract:

The effect of glassy-phase, using AlN and Lu2O3 as sintering additives, on the microstructure and mechanical properties of liquid-phase-sintered, and subsequently annealed SiC ceramics was investigated. The microstructure was strongly influenced by the sintering additive composition, which determines the intergranular phase (IGP). The average thickness of SiC grains increased with increasing the Lu2O3 /(AlN + Lu2O3) ratio, whereas the average aspect ratio decreased with increasing the molar ratio. The homophase and heterophase boundaries of the SiC ceramics were completely crystalline in all specimens. The room temperature (RT) strength decreased with increasing the molar ratio whereas the RT toughness showed a minimum at the molar ratio of 0.6. The best results at RT were obtained when the molar ratio was 0.2. The flexural strength and fracture toughness of the ceramics were >700 MPa and ~6 MPa.m1/2 at RT. The high temperature strength was critically affected by the chemistry, especially the content of Al in the IGP. The best strength at temperatures ³ 1500oC was obtained when the molar ratio was 0.5. Flexural strengths of the ceramics at 1500oC and 1600oC were 610 ± 80 MPa and 540 ± 30 MPa, respectively. The beneficial effect of the new additive compositions (Lu2O3-AlN) on high-temperature strength of SiC ceramics was attributed to the crystallization or removal of IGP and introduction of Al into SiC, i.e., removal or reduction of Al content from the IGP, resulting in an improved refractoriness of the IGP.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-310

Citation:

Online since:

June 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.F. Lange: J. Mater. Sci. Vol. 10 (1975), p.314.

Google Scholar

[2] M.A. Mulla and V.D. Krstic: J. Mater. Sci. Vol. 29 (1994), p.934.

Google Scholar

[3] N.P. Padture: J. Am. Ceram. Soc. Vol. 77 (1994), p.519.

Google Scholar

[4] D. Chen, M.E. Sixta, X.F. Zhang, L.C. De Jonghe and R. O. Ritchie: Acta Mater. Vol. 48 (2000), p.4599.

Google Scholar

[5] G. Rixecker, I. Wiedmann, A. Rosinus and F. Aldinger: J. Europ. Ceram. Soc. Vol. 21 (2001), p.1013.

Google Scholar

[6] C.M. Wang, X. Pan, M.J. Hoffman, R.M. Cannon and M. Ruhle: J. Am. Ceram. Soc. Vol. 79 (1996), p.788.

Google Scholar

[7] G. Pezzotti, K. Ota, Y. Yamamoto and H.T. Lin: J. Am. Ceram. Soc. Vol. 86 (2003), p.471.

Google Scholar

[8] Y. -W. Kim, M. Mitomo and T. Nishimura: J. Am. Ceram. Soc. Vol. 84 (2001), p. (2060).

Google Scholar

[9] S.G. Lee, Y. -W. Kim and M. Mitomo: J. Am. Ceram. Soc. Vol. 84 (2001), p.1347.

Google Scholar

[10] Z.C. Jou, A.V. Virkar and R.A. Cutler: J. Mater. Res. Vol. 6 (1991), p. (1945).

Google Scholar

[11] E. Liden, E. Carlstrom, L. Eklund, B. Nyberg and R. Carlsson: J. Am. Ceram. Soc. Vol. 78 (1995), p.1761.

Google Scholar

[12] Z. Chen: J. Am. Ceram. Soc. Vol. 79 (1996), p.530.

Google Scholar

[13] D. Foster and D.P. Thompson: J. Europ. Ceram. Soc. Vol. 19 (1999), p.2823.

Google Scholar

[14] Y. -W. Kim, M. Mitomo and T. Nishimura: J. Am. Ceram. Soc. Vol. 85 (2002), p.1007.

Google Scholar

[15] Y. -W. Kim, S.H. Kim, M. Mitomo and T. Nishimura: Key Engineering Mater. Vol. 247 (2003), p.267.

Google Scholar

[16] J.Y. Kim, Y. -W. Kim, M. Mitomo, G. D. Zhan and J. G. Lee: J. Am. Ceram. Soc. Vol. 82 (1999), p.441.

Google Scholar

[17] Y. Zhou, K. Hirao, Y. Yamauchi and S. Kanzaki: J. Europ. Ceram. Soc. Vol. 22 (2002), p.2689.

Google Scholar

[18] P.F. Becher, E.Y. Sun, C.H. Hsueh, K.B. Alexander, S.L. Hwang, S.B. Waters and C.G. Westmoreland: Acta Mater. Vol. 10 (1996), p.3881.

Google Scholar

[19] G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Maeshall: J. Am. Ceram. Soc. Vol. 64 (1981), p.533.

Google Scholar

[20] S.S. Shinozaki: MRS Bull. Vol. 20 (1995), p.42.

Google Scholar

[21] Y. -W. Kim, K. Ando and M.C. Chu: J. Am. Ceram. Soc. Vol. 86 (2003), p.465.

Google Scholar

[22] D.R. Clarke: J. Am. Ceram. Soc. Vol. 70 (1987), p.15.

Google Scholar

[23] J.E. Shelby, J.T. Kohli: J. Am. Ceram. Soc. Vol. 73 (1990), p.39.

Google Scholar

[24] A.Z. Ditzel: Z. Elektrochem Vol. 48 (1942) p.9.

Google Scholar

[25] H.J. Choi, G.H. Kim, J.G. Lee and Y. -W. Kim: J. Am. Ceram. Soc. Vol. 83 (2000) p.2821.

Google Scholar

[26] H.J. Choi, Y. -W. Kim, M. Mitomo, T. Nishimura, J.H. Lee and D.Y. Kim: Scripta Mater. Vol. 50 (2004), p.1203.

Google Scholar

[27] S.Q. Guo, N. Hirosaki, Y. Yamamoto, T. Nishimura and M. Mitomo: Scripta Mater. Vol. 45 (2001), p.867.

Google Scholar

[28] A. Zangvil and R. Ruh: J. Am. Ceram. Soc. Vol. 71 (1988), P. 884.

Google Scholar

[29] Y. -W. Kim, M. Mitomo and H. Hirotsuru: J. Am. Ceram. Soc. Vol. 80 (1997), p.99.

Google Scholar

[30] Y. -W. Kim, M. Mitomo, H. Emoto and J. G. Lee: J. Am. Ceram. Soc. Vol. 81 (1998), p.3136.

Google Scholar