Highly Ordered Macroporous BN-Based Ceramics Prepared from Templated Preceramic Polymers

Article Preview

Abstract:

Macroporous SiCBN and BCN ceramic were prepared by infiltrating these preceramic polymers into the colloidal silica crystalline array, followed by pyrolysis at 1400ı and subsequently etching off the silica spheres. It is generally observed by SEM and TEM that a highly ordered and interconnected 'honeycomb' pore structure was obtained by replicating the three dimensional close packed silica spheres which was fabricated by natural sedimentation. And BET surface areas in range 413 ~ 315 m2/g and pore sizes of 113 ~ 395 nm in the porous materials were tailored by controlling the sacrificial silica sphere sizes in range 145~500 nm even under volume shrinkage involved during pyrolytic step. The porous SiCBN ceramics and BCN ceramic showed a slight weight loss of 0.2~0.8% and 4%, respectively, indicating excellent resistance to oxidation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

323-328

Citation:

Online since:

June 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Bill, F. Aldinger: Adv. Mater. Vol. 7 (1995), p.775.

Google Scholar

[2] D. Seyferth, W. S. Rees: Chem. Mater. Vol. 3 (1991), p.1106.

Google Scholar

[3] R. Riedel, A. Kienzle, W. Dressler, L. M. Ruwisch, J. Bill, F. Aldinger: Nature Vol. 382 (1996), p.796.

DOI: 10.1038/382796a0

Google Scholar

[4] M. Weinmannn, T. W. Kamphowe, J. Schuhmacher, K. Müller, F. Aldinger: Chem. Mater. Vol/ 12 (2000), p.2112.

Google Scholar

[5] Q.D. Nghiem, J.K. Jeon, L.Y. Hong, D.P. Kim: J. Organomet. Chem. Vol. 688 (2003), p.27.

Google Scholar

[6] J.K. Jeon, Q.D. Nghiem, D.P. Kim, J. Lee: J. Organomet. Chem. Vol. 689 (2004), p.2311.

Google Scholar

[7] Synthesis of Novel Amorphous boron carbonitride ceramics from the borazine derivatives copolymer via hydroboration, J.K. Jeon, Y. Uchimaru, D.P. Kim: Inorg. Chem. In press.

DOI: 10.1021/ic035254a

Google Scholar

[8] H. van Bekkun, E.M. Flanigen, J.C. Jansen: Introduction to Zeolite Science and Practice (Elsevier, Amsterdam 1991).

Google Scholar

[9] F. Schuth: Chem. Mater. Vol. 13 (2001), p.3184.

Google Scholar

[10] J.S. Yu, S.B. Yoon, G.S. Chai: Carbon Vol. 39 (2001), p.1421.

Google Scholar

[11] I.K. Sung, S.B. Yoon, J.S. Yu, D.P. Kim, Chem. Comm. (2002) p.1480.

Google Scholar

[12] K. Osseo-Asare, F.J. Arriagada: Colloids and Surfaces Vol. 50 (1990), p.321.

Google Scholar

[13] B.T. Holland, C.F. Blanford, T. Do, A. Stein: Chem. Mater. Vol. 11 (1999), p.795.

Google Scholar

[14] M. Weinmann, J. Schuhmacher, H. Kummer, S. Prinz, J. Peng, H. J. Seifert, M. Christ, K. Müller, J. Bill, F. Aldinger: Chem. Mater. Vol. 12 (2000), p.623.

DOI: 10.1021/cm9910299

Google Scholar

[15] W. R. Schmidt, D. M. Narsavage-Heald, D. M. Jones, P. S. Marchetti, D. Raker, G. E. Maciel: Chem. Mater. Vol. 11 (1999), p.1455.

DOI: 10.1021/cm980558u

Google Scholar

[16] H. Wang, X.D. Li, J.S. Yu, D.P. Kim: J. Mater. Chem. Vol. 14 (2004), p.1383.

Google Scholar

[17] R. Ryoo, S.H. Joo, M. Kruk , M. Jaroniec: Adv. Mater. Vol. 13 (2001) p.677.

Google Scholar

[18] H. Schmidt, D. Koch, G. Grathwohl: J. Am. Ceram. Soc. Vol. 84 (2001) p.2252.

Google Scholar

[19] M.C. Carbajo, A. Gomez, M.J. Torralvo, E. Enciso: J. Mater. Chem. Vol. 12 (2002), p.2740.

Google Scholar