Microstructure and Mechanical Properties of Spark-Plasma-Sintered SiC-TiC Composites

Article Preview

Abstract:

Rapid densification of the SiC-10, 20, 30, 40wt% TiC powder with Al, B and C additives was carried out by spark plasma sintering (SPS). In the present SPS process, the heating rate and applied pressure were kept at 100°C/min and at 40 MPa, while the sintering temperature varied from 1600-1800°C in an argon atmosphere. The full density of SiC-TiC composites was achieved at a temperature above 1800°C by spark plasma sintering. The 3C phase of SiC in the composites was transformed to 6H and 4H by increasing the process temperature and the TiC content. By tailoring the microstructure of the spark-plasma-sintered SiC-TiC composites, their toughness could be maintained without a notable reduction in strength. The strength of 720 MPa and the fracture toughness of 6.3 MPa·m1/2 were obtained in the SiC-40wt% TiC composite prepared at 1800°C for 20 min.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

335-339

Citation:

Online since:

June 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.C. Wei and P.F. Becher: J. Am. Ceram. Soc. Vol. 67 (1984), p.571.

Google Scholar

[2] M.A. Janney: Am. Ceram. Soc. Bull. Vol. 65 (1986), p.357.

Google Scholar

[3] H. Endo, M. Ueki and H. Kubo: J. Mater. Sci. Vol. 25 (1990), p.2503.

Google Scholar

[4] B.W. Lin, T. Yano and T. Iseki: J. Ceram. Soc. Jpn. Vol. 100 (1992), p.509.

Google Scholar

[5] N. Tamari, T. Tanaka, K. Tanaka, I. Kondoh, M. Kawahara and M. Tokita: J. Ceram. Soc. Jpn Vol. 103 (1995), p.740.

Google Scholar

[6] D.S. Perera, M. Tokita and S. Moricca: J. Euro. Ceram. Soc. Vol. 18 (1998), p.401.

Google Scholar

[7] Y. Zhou, K. Hirao, M. Toriyama and H. Tanaka: J. Am. Ceram. Soc. Vol. 83 (2000), p.654.

Google Scholar

[8] K. -S. Cho, S. Kim, S. -H. Beak, H. -J. Choi and J. -G. Lee: J. Kor. Ceram. Soc. Vol. 38 (2001), p.687.

Google Scholar

[9] K. -S. Cho, K. -S. Lee, J. -H. Song, J. -Y. Kim and K. -H. Song: J. Kor. Ceram. Soc. Vol. 40 (2003), p.751.

Google Scholar

[10] K. -S. Cho, K. -S. Lee, S. -H. Beak and S. -J. Lee: J. Kor. Crystal Growth and Crystal Tech. Vol. 13 (2003), p.176.

Google Scholar

[11] ASTM Standard F394-78, pp.446-50 in ASTM Annual Book of Standards (Am. Soc. of Test. and Mater. PA 1996).

Google Scholar

[12] G.R. Anstis, P. Chantikul, B.R. Lawn and D.B. Marshall: J. Am. Ceram. Soc. Vol. 64 (1981), p.533.

Google Scholar

[13] R.W. Rice, S.W. Freiman and P.F. Becher: J. Am. Ceram. Soc. Vol. 64 (1981), p.345.

Google Scholar

[14] K. -S. Cho, H. -J. Choi, J. -G. Lee and Y. -W. Kim: J. Am. Ceram. Soc. Vol. 79 (1996) p.1711.

Google Scholar

[15] K. -S. Cho, H. -J. Choi, J. -G. Lee and Y. -W. Kim: J. Mater. Sci. Lett. Vol. 17 (1988) p.1081.

Google Scholar

[16] Y. -I. Kim and Y. -W. Kim: J. Ceram. Soc. Jpn. Vol. 112 (2004) p.18.

Google Scholar