Toughening of Ceramic Composite Designed by Silica-Based Transformation Weakening Interphases

Abstract:

Article Preview

A new concept for achieving graceful failure in oxide composites is introduced. It is based on crack deflection in a weak interphase between a matrix and reinforcement (e.g. fiber), or in a laminated composite. The interphase can be phase transformation weakened by volume contraction and/or unit cell shape change. Microcracking induced by a displacive, crystallographic phase transformation in silica-based interphases resulted in increase in the toughness of the bulk composites. In the present study, mullite/cordierite laminates with b®a-cristobalite (SiO2) transformation weakened interphase, and alumina matrix fibrous monolith with metastable hexacelsian (BaAl2Si2O8) interphases were investigated for interphase debonding behavior. In mechanical test, the laminates showed step-wise load drop behavior dependent on a grain size of b-cristobalite. In particular, in the fibrous monolith design, the load-deflection curve showed unusual plastic-like behavior with reasonable work of fracture.

Info:

Periodical:

Edited by:

Hai-Doo Kim, Hua-Tay Lin and Michael J. Hoffmann

Pages:

358-366

Citation:

S. J. Lee et al., "Toughening of Ceramic Composite Designed by Silica-Based Transformation Weakening Interphases ", Key Engineering Materials, Vol. 287, pp. 358-366, 2005

Online since:

June 2005

Export:

Price:

$38.00

[1] D.B. Marshall, B.N. Cox and A. G. Evans: Acta Metall. et Materialia, Vol. 33 (1985), p. (2013).

[2] M.Y. He and J.W. Hutchinson: Int. J. Solids and Structures, Vol. 25 (1989), p.1053.

[3] G. Evans and D.B. Marshall: Acta Metall. et Materialia, Vol. 37 (1989), p.2567.

[4] R.J. Kerans, R.S. Hay and T. A. Parthasarathy: Am. Ceram. Soc. Bull. Vol. 68 (1993), p.429.

[5] W.J. Clegg, K. Kendall, D. Birchall and T.W. Button: Nature, Vol. 347 (1990), p.455.

[6] W.J. Clegg: Acta Metall. Vol. 40 (1992), p.3085.

[7] D.H. Kuo and W.M. Kriven: J. Am. Ceram. Soc. Vol. 80 (1997), p.2421.

[8] D.H. Kuo and W.M. Kriven: Mater. Res. Soc. Symp. Vol. 458 (1997), p.477.

[9] W.M. Kriven: J. Am. Ceram. Soc. Vol. 71 (1988), p.1022.

[10] W.M. Kriven: J de Physique IV Colloque, Vol. C8 (1995), p.101.

[11] V.G. Hill and R. Roy: J. Am. Ceram. Soc., Vol. 41 (1958), p.532.

[12] C. N Fenner: Am. J. Sci. [4th Series], Vol. 36 (1913), p.331.

[13] M.J. Buerger: Am. Mineral. Vol. 39 (1954), p.600.

[14] E.S. Thomas, J.G. Thompson, R.L. Withers, M. Sterns, Y. Xiao and R. J. Kirkpatrick: J. Am. Ceram. Soc. Vol. 77 (1994), p.49.

[15] R.E. Newnham and H.D. Megaw: Acta Crystal. Vol. 13 (1960), p.303.

[16] H.C. Lin and W.R. Foster: Am. Mineral. Vol. 53 (1968), p.134.

[17] C.E. Semler and W.R. Foster: J. Am. Ceram. Soc. Vol. 52 (1969), p.679.

[18] G. Oehlschlege and K. Abraham: Kristall und Technik. Vol. 11 (1976), p.59.

[19] J.L. Shull: Ph. D Thesis, Univ. of Illinois at Urbana-Champaign. (1997).

[20] Y. Takeuchi: Mineral. J. Vol. 2 (1958), p.311.

[21] W. Wong, H. McMurdie, B. Paretzkin, C. Hubbard and A. Dragoo: Powder Diffraction, Vol. 2 (1987), p.107.

[22] M.A. Gülgün, O.O. Popoola and W.M. Kriven: J. Am. Ceram. Soc. Vol. 77 (1994), p.531.

[23] S.J. Lee, E.A. Benson and W.M. Kriven: J. Am. Ceram. Soc. Vol. 82 (1999), p. (2049).

[24] S.J. Lee and W.M. Kriven: Ceram. Eng. Sci. Proc. Vol. 20 (1999), p.69.

[25] A.J. Perrotta, D.K. Grubbs, E.S. Martin and N.R. Dando: J. Am. Ceram. Soc. Vol. 72 (1989), p.441.

[26] H.G. Tattersall and G. Tappin: J. Mater. Sci. Vol. 1 (1966), p.296.

Fetching data from Crossref.
This may take some time to load.