Highly Porous Silica Nanoaerogels for Ultrafast Nonlinear Optical Applications

Abstract:

Article Preview

Highly porous silica nanoaerogels with low apparent density of ~0.1 g/cm3 and ~0.07 g/cm3 were synthesized through two-step sol-gel processing and low temperature supercritical fluid drying. The nonlinear refraction (γ) of silica nanoaerogels was estimated to be ~ -3.4 x 10-16 m2/W for ~0.1 g/cm3 and ~0.07 g/cm3 apparent densities with a signal-beam femtosecond z-scan spectroscopy. The third-order nonlinear refraction coefficient of nanostructure silica nanoaerogels was almost four orders larger than that of bulk silica materials. The large nonlinearrefraction with high nonlinear figure of merit (γ/βλ, β~2×10-10 m/W for 0.07 g/cm3 apparent density, β~6×10-10 m/W for 0.1 g/cm3 apparent density, λ~0.775 µm) is an ideal optical property for nonlinear applications of homeland security, battlefield enhancement, and industrial uses.

Info:

Periodical:

Edited by:

Hai-Doo Kim, Hua-Tay Lin and Michael J. Hoffmann

Pages:

352-357

Citation:

J. T. Seo et al., "Highly Porous Silica Nanoaerogels for Ultrafast Nonlinear Optical Applications", Key Engineering Materials, Vol. 287, pp. 352-357, 2005

Online since:

June 2005

Export:

Price:

$38.00

[1] M. Sheik-bahae, A.A. Said, T. Wei, D.J. Hagan, E.W.V. Stryland, IEEE J. Quantum Electron. 26(4), 760 (1990).

DOI: https://doi.org/10.1109/3.53394

[2] S.R. Friberg, and P.W. Smith, IEEE J. Quantum Electron. QE-23, 2089 (1987).

[3] R. Adair, L.L. Chase, and S.A. Payne, J. Opt. Soc. Am. B 4, 875 (1987).

[4] M.J. Moran, C.Y. She, and R.L. Carman, IEEE J. Quantum Electron, QE-11, 259 (1975).

[5] A. Owyoung, IEEE J. Quantum Electron. QE-9, 1064 (1973).

[6] A.Y. Hamad, J.P. Wicksted, S.Y. Wang, and G. Cantwell, J. Appl. Phys. 78(5), 2932 (1995).

[7] Q. Yang, J.T. Seo, S.J. Creekmore, D. Temple, K.P. Yoo, S.Y. Kim, S. S. Jung, and A. Mott, Applied Physics Letters 82(1), 19 (2003).

[8] J.T. Seo, Q. Yang, S. Creekmore, D. Temple, K.P. Yoo, S.Y. Kim, A. Mott, M. Namkung, and S.S. Jung, Applied Physics Letters 82(25), 4444 (2003).

[9] D. milam, Appl. Opt. 37, 546 (1998).

[10] R. Boyd, Nonlinear Optics, (Academic Press, San Diego 1992), 177.

[11] R.W. Hellwarth, Prog. Quant. Electron. 5, 1 (1979).

[2] 10 11.

[4] 10 11.

[6] 10 11.

[8] 10 11.

[1] 10 12.

6.

7.

8.

9 1.

6 Tra1i Tra2i Tra4i Tra5i BI 110 12 ⋅ 0 Ioi Ioi, Ioi, Ioi, AI, 2 mm 5 mm 7 mm 9 mm Exp. data.

[2] 10 11.

[4] 10 11.

[6] 10 11.

[8] 10 11.

[1] 10 12.

6.

7.

8.

9.

[1] 0.

6 Tra6i Tra8i Tra10i BI2 110 12 ⋅ 0 Ioi Ioi, Ioi, AI, 3 mm 5 mm.

[6] 5 mm Exp. data 20 40 60 80 Intensity (MW/cm2) 20 40 60 80 Intensity (MW/cm2) Normalized Transmittance Normalized Transmittance(a) (b).

[2] 10 11.

[4] 10 11.

[6] 10 11.

[8] 10 11.

[1] 10 12.

6.

7.

8.

9 1.

6 Tra1i Tra2i Tra4i Tra5i BI 110 12 ⋅ 0 Ioi Ioi, Ioi, Ioi, AI, 2 mm 5 mm 7 mm 9 mm Exp. data.

[2] 10 11.

[4] 10 11.

[6] 10 11.

[8] 10 11.

[1] 10 12.

6.

7.

8.

9.

[1] 0.

6 Tra6i Tra8i Tra10i BI2 110 12 ⋅ 0 Ioi Ioi, Ioi, AI, 3 mm 5 mm.

[6] 5 mm Exp. data 20 40 60 80 Intensity (MW/cm2) 20 40 60 80 Intensity (MW/cm2) Normalized Transmittance Normalized Transmittance(a) (b).