[1]
P.S. DiMascio, R.M. Orenstein, M.S. Schroder, L. Tognarelli, G.S. Corman and A.J. Dean, General Electric Company Ceramic Gas Turbine Programs" to be published in "Progress in Ceramic Gas Turbine Development, Volume I, Edited by M. van Roode, D. W. Richardson, and M. K. Ferber, published by ASME.
DOI: 10.1115/93-gt-309
Google Scholar
[2]
G. L. Boyd, J. R. Kidwell, and D. M. Kreiner, A Technology Development Summary for the AGT 101 Advanced Gas Turbine Program, " Proceedings of the Twenty-Fourth Automotive Technology Development Contractors, Coordination Meeting, Society of Automotive Engineers, Inc., Warrendate, PA, P-197, pp.115-35, (1987).
DOI: 10.4271/870466
Google Scholar
[3]
H. E. Helms, P. J. Haley, L. E. Groseclose, S. J. Hilpisch, and A. H. Bell, Advanced Turbine Technology Applications Project, " Proceedings of the Twenty-Sixth Automotive Technology Development Contractors, Coordination Meeting, Society of Automotive Engineers, Inc., Warrendate, PA, P-219, pp.319-26, (1989).
Google Scholar
[4]
W. D. Carruthers, D. W. Richerson, and K. W. Benn, 3500-Hour Durability Testing of Commercial Ceramic Materials Interim Report, DOE/NASA/0027-80/1, NASA Report CR-159785, NASA Lewis Research Center, Cleveland, OH, (1980).
Google Scholar
[5]
A. K. Misra, A. M. Johnson, and B. J. Bartlett, Progress Toward Meeting Material Challenges for High Speed Civil Transport Propulsion, Proceedings of the 14 th International Symposium on Air Breathing Engines, Waltrup, P. J., ed., International Society for Air Breathing Engines, Chattanooga, TN. (1999).
DOI: 10.2514/6.1979-7044
Google Scholar
[6]
Office of Industrial Technologies, 1991, Continuous Fiber Ceramic Composite Program, Report DOE/IET-91/8, Current Awareness Industrial Energy Technology, US Department of Energy, Washington, D. C.
Google Scholar
[7]
M. van Roode, Ceramic Retrofit Program, pp.77-93 in Proceedings of the Joint Contractors Meeting: FE/EE Advanced Turbine Systems Conference FE Fuel Cells and Coal-Fired Heat Engines Conference, DOE/METC-93/6132, August (1993).
Google Scholar
[8]
M. K. Ferber, H-T Lin, M. G. Jenkins, and T. Ohji, Mechanical Characterization of Monolithic Ceramics for Gas Turbine Applications, Chapter 29 in Ceramic Gas Turbine Component Development And Characterization: Progress in Ceramic Gas Turbine Development, Vol. 2, edited by Mark van Roode, Mattison K. Ferber, and David W. Richerson; ASME Press New York, US, (2003).
DOI: 10.4028/www.scientific.net/kem.287.367
Google Scholar
[9]
M. K. Ferber, H. T. Lin, V. Parthasarathy, and R. A. Wenglarz, Degradation of Silicon Nitrides In High Pressure, Moisture Rich Environments, ASME paper 2000GT-661, presented at the ASME TURBO EXPO LAND, SEA & AIR, Munich, Germany, 8-11 May (2000).
DOI: 10.1115/2000-gt-0661
Google Scholar
[10]
H. T. Lin, M. K. Ferber, and M. van Roode, Evaluation of Mechanical Reliability of Si3N4 Nozzles after Exposure in an Industrial Gas Turbine, 7th Int. Symp. Ceramic Materials and Components for Engines, J.G. Heinrich and Aldinger, F., eds., Wiley-VCH, Goslar, Germany, June 19-21, 2000. pp.97-102.
DOI: 10.1002/9783527612765.ch17
Google Scholar
[11]
H. T. Lin, M. K. Ferber, W. Westphal, and F. Macri, Evaluation of Mechanical Reliability of Silicon Nitride Vanes After Field Tests in an Industrial Gas Turbine, ASME 2002-GT-30629, presented and published in the Proceedings of at TURBO EXPO Land Sea, and Air 2002, June 3-6, Amsterdam, The Netherlands.
DOI: 10.1115/gt2002-30629
Google Scholar
[12]
E. J. Opila and R. E. Hann, Jr., Paralinear oxidation of SiC in water vapor, J. Am. Ceram. Soc., 80.
Google Scholar
[1]
197-205, (1997).
Google Scholar
[13]
E. J. Opila, Variation of the oxidation rate of silicon carbide with vapor pressure, J. Am. Ceram. Soc., 82.
Google Scholar
[3]
625-636, (1999).
Google Scholar
[14]
J. L. Smialek, R. C. Robinson, E. J. Opila, D. S. Fox, and N. Jacobson, Recession due to SiO2 scale volatility under combustor conditions, Advanced Comp. Mater., 8.
DOI: 10.1163/156855199x00056
Google Scholar
[1]
33-45, (1999).
Google Scholar
[15]
Unpublished work, University of Dayton Research Institute, (1994).
Google Scholar
[16]
M. K. Ferber, H. T. Lin, and J. Keiser, 2000 Oxidation Behavior of Non-Oxide Ceramics in a High-Pressure, High-Temperature Steam Environment, Mechanical, Thermal and Environmental Testing and Performance of Ceramic Composites and Components, ASTM STP 1392, M. G. Jenkins, E. Lara-Curzio and S. T. Gonczy, Eds., American Society for Testing and Materials, West Conshohocken, PA, (2000).
DOI: 10.1520/stp15015s
Google Scholar
[17]
I. Yuri, T. Hisamatsu, Y. Etori and T. Yamamoto, Degradation Of Silicon Carbide In Combustion Gas Flow At High-Temperature And Speed, ASME paper 2000-GT-664, presented at the ASME TURBO EXPO 2000, LAND, SEA, & AIR, Munich, Germany, May 8-11, (2000).
DOI: 10.1115/2000-gt-0664
Google Scholar
[18]
Y. Furuse, T. Teramae, T. Tsuchiya, F. Maeda, Y. Tsukuda, and K. Wada, Application of Ceramics to a Power Generating Gas Turbine, in Ceramic Gas Turbine Design and Test Experience: Progress in Ceramic Gas Turbine Development, Vol. 1 edited by Mark van Roode, Mattison K. Ferber, and David W. Richerson; ASME Press New York, US, (2002).
DOI: 10.1115/94-gt-309
Google Scholar