Controlled Release Technology Suppresses the Progression of Disseminated Pancreatic Cancer Cells

Abstract:

Article Preview

NK4, composed of the NH2-terminal hairpin and subsequent four-kringle domains of hepatocyte growth factor (HGF), acts as a potent angiogenesis inhibitor. This study is an investigation to evaluate the feasibility of controlled release of NK4 plasmid DNA in suppressing tumor growth. Controlled release by a biodegradable hydrogel enabled the NK4 plasmid DNA to enhance the tumor suppression effects. Biodegradable microspheres of cationized gelatin were prepared for the controlled release of a NK4 plasmid DNA. The cationized gelatin microspheres incorporating NK4 plasmid DNA were subcutaneously injected to tumor-bearing mice to evaluate the suppressive effects on tumor angiogenesis and growth. The cationized gelatin microspheres incorporating NK4 plasmid DNA could release over 28 days. When the cationized gelatin microspheres incorporating NK4 plasmid DNA were injected into the subcutaneous tissue of mice intraperitoneally inoculated with pancreatic cancer cells, their survival time period was prolonged. Tumor growth was suppressed to a significantly greater extent than free NK4 plasmid DNA. The controlled release of NK4 plasmid DNA suppressed angiogenesis and increased cell apoptosis in the tumor tissue, while it enhanced and prolonged the serum level of NK4 protein. We conclude that the controlled release technology was promising to enhance the tumor suppression effects of NK4 plasmid DNA.

Info:

Periodical:

Key Engineering Materials (Volumes 288-289)

Edited by:

Xingdong Zhang, Junzo Tanaka, Yaoting Yu and Yasuhiko Tabata

Pages:

121-124

Citation:

T. Kushibiki et al., "Controlled Release Technology Suppresses the Progression of Disseminated Pancreatic Cancer Cells", Key Engineering Materials, Vols. 288-289, pp. 121-124, 2005

Online since:

June 2005

Export:

Price:

$38.00

[1] T. Nakamura, T. Nishizawa, M. Hagiya, T. Seki, M. Shimonishi, A. Sugimura, K. Tashiro, and S. Shimizu. Molecular cloning and expression of human hepatocyte growth factor. Nature 342: 440-443 (1989).

DOI: https://doi.org/10.1038/342440a0

[2] R. Zarnegar, and G. K. Michalopoulos. The many faces of hepatocyte growth factor: from hepatopoiesis to hematopoiesis. J. Cell Biol. 129: 1177-1180 (1995).

DOI: https://doi.org/10.1083/jcb.129.5.1177

[3] K. Matsumoto and T. Nakamura. Hepatocyte growth factor (HGF) as a tissue organizer for organogenesis and regeneration. Biochem. Biophys. Res. Commun. 239: 639-644 (1997).

DOI: https://doi.org/10.1006/bbrc.1997.7517

[4] J. Cortner, G. F. Vande Woude, and S. Rong. The Met-HGF/SF autocrine signaling mechanism is involved in sarcomagenesis. EXS 74: 89-121 (1995).

DOI: https://doi.org/10.1007/978-3-0348-9070-0_6

[5] M. Jeffers, S. Rong, and G. F. Vande Woude. Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion / metastasis. J. Mol. Med. 74: 505-513 (1996).

DOI: https://doi.org/10.1007/bf00204976

[6] C. T. To and M. S. Tsao. The roles of hepatocyte growth factor/scatter factor and met receptor in human cancers. Oncol. Rep. 5: 1013-1024 (1998).

DOI: https://doi.org/10.3892/or.5.5.1013

[7] W. G. Jiang, S. Hiscox, K. Matsumoto, and T. Nakamura. Hepatocyte growth factor/scatter factor, its molecular, cellular and clinical implications in cancer. Crit. Rev. Oncol. Hematol. 29: 209-248 (1999).

DOI: https://doi.org/10.1016/s1040-8428(98)00019-5

[8] K. Date, K. Matsumoto, H. Shimura, M. Tanaka, and T. Nakamura. HGF/NK4 is a specific antagonist for pleiotrophic actions of hepatocyte growth factor. FEBS Lett. 420: 1-6 (1997).

DOI: https://doi.org/10.1016/s0014-5793(97)01475-0

[9] K. Date, K. Matsumoto, K. Kuba, H. Shimura, M. Tanaka, and T. Nakamura. Inhibition of tumor growth and invasion by a four-kringle antagonist (HGF/NK4) for hepatocyte growth factor. Oncogene 17: 3045-3054 (1998).

DOI: https://doi.org/10.1038/sj.onc.1202231

[10] K. Kuba, K. Matsumoto, K. Date, H. Shimura, M. Tanaka, and T. Nakamura. HGF/NK4, a four-kringle antagonist of hepatocyte growth factor, is an angiogenesis inhibitor that suppresses tumor growth and metastasis in mice. Cancer Res. 60: 6737-6743 (2000).

DOI: https://doi.org/10.1038/sj.onc.1202231

[11] T. Merdan, J. Kopecek, and T. Kissel. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer. Adv. Drug Deliv. Rev. 54: 715-758 (2002).

DOI: https://doi.org/10.1016/s0169-409x(02)00046-7

[12] M. Matsuura, Y. Yamazaki, M. Sugiyama, M. Kondo, H. Ori, M. Nango, N. Oku. Polycation liposome-mediated gene transfer in vivo. Biochim. Biophys. Acta. 1612: 136-143 (2003).

DOI: https://doi.org/10.1016/s0005-2736(03)00109-3

[13] A. Veis. The physical chemistry of gelatin. Int. Rev. Connect. Tissue Res. 3: 113-200 (1965).

[14] Y. Tabata, Y. Ikada. Protein release from gelatin matrices. Adv. Drug Deliv. Rev. 31: 287-301 (1998).

[15] Y. Fukunaka, K. Iwanaga, K. Morimoto, M. Kakemi, and Y. Tabata. Controlled release of plasmid DNA from cationized gelatin hydrogels based on hydrogel degradation. J. Control. Release 80: 333-343 (2002).

DOI: https://doi.org/10.1016/s0168-3659(02)00026-3

[16] T. Kushibiki, R. Tomoshige, Y. Fukunaka, M. Kakemi, and Y. Tabata. In vivo release and gene expression of plasmid DNA by hydrogels of gelatin with different cationization extents. J. Control. Release 90: 207-216 (2003).

DOI: https://doi.org/10.1016/s0168-3659(03)00197-4

[17] H. Cohen, R. J. Levy, J. Gao, I. Fishbein, V. Kousaev, S. Sosnowski, S. Slomkowski, and G. Golomb. Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles. Gene Ther. 7: 1896-1905 (2000).

DOI: https://doi.org/10.1038/sj.gt.3301318

[18] C. Perez, A. Sanchez, D. Putnam, D. Ting, R. Langer, and M. J. Alonso. Poly(lactic acid)-poly(ethylene glycol) nanoparticles as new carriers for the delivery of plasmid DNA. J. Control. Release 75: 211-224 (2001).

DOI: https://doi.org/10.1016/s0168-3659(01)00397-2

[19] L. Holmgren, M. S. O'Reilly, and J. Folkman. Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nat. Med. 1: 149-153 (1995).

DOI: https://doi.org/10.1038/nm0295-149

[20] M. S. O'Reilly, L. Holmgren, C. Chen, and J. Folkman. Angiostatin induces and sustains dormancy of human primary tumors in mice. Nat. Med. 2: 689-692 (1996).

DOI: https://doi.org/10.1038/nm0696-689

[21] R. Langer. Drug delivery and targeting. Nature 392S: 5-10 (1998).

[22] F. D. Ledley. Pharmaceutical approach to somatic gene therapy. Pharm. Res. 13: 1595-1614 (1996).

[23] W. Zauner, A. Kichler, W. Schmidt, A. Sinski, and E. Wagner. Glycerol enhancement of ligand-polylysine/DNA transfection. Biotecniques 20: 905-913 (1996).

[24] P. Midoux and M. Monsigny. Efficient gene transfer by histidylated polylysine/pDNA complexes. Bioconjugate Chem. 10: 406-411 (1999).

DOI: https://doi.org/10.1021/bc9801070