Investigation of Nonisothermal Crystallization Behaviors of Poly and Silica Nanocomposites Using Differential Scanning Calorimetry

Article Preview

Abstract:

Nonisothermal crystallization behaviors of PVA and poly (vinyl alcohol) and Silica (PVA/SiO2) nanocomposites prepared via a self-assembly monolayer (SAM) technique are investigated in this study. Differential scanning calorimetry (DSC) is used to measure the crystallization temperature and enthalpy of PVA and nanocomposites in nitrogen at various cooling rate. The results show that the degree of crystallinity of PVA and nanocomposites decreases when the SiO2 content increases but increases with an increasing cooling rate. The peak crystallization temperature decreases with an increasing cooling rate.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 295-296)

Pages:

39-44

Citation:

Online since:

October 2005

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2005 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.R. Supronowicz, P.M. Ajayan and K.R. Ullmann: Journal of Biomedical Materials Research, Vol. 59 (2002), p.499.

Google Scholar

[2] R. Zhang and P.X. Ma: Journal of Biomedical Materials Research, Vol. 52 (2000), p.430.

Google Scholar

[3] F. Bauer, V. Sauerland and H.J. Gläsel: Macromolecular Materials and Engineering, Vol. 287 (2002), p.546.

Google Scholar

[4] W.E.V. Zyl, M. García and B.A.G. Schrauwen: Macromolecular Materials and Engineering, Vol. 287 (2002), p.106.

Google Scholar

[5] S.A. Jenekhe and S. Yi: Advanced Materials, Vol. 12 (2000), p.1274.

Google Scholar

[6] C.J. Wang, Y. Pang and P.N. Prasad: Polymer, Vol. 32 (1991), p.605.

Google Scholar

[7] M.Q. Fetterman: Elastomerics, Vol. 116 (1984), p.18.

Google Scholar

[8] R. Solaro, A. Corti and E. Chiellii: Polymers for Advanced Tech., Vol. 11 (2000), p.873.

Google Scholar

[9] S.Y. Kim and Y.M. Lee: Journal of Applied Polymer Science, Vol. 74 (1999), p.1752.

Google Scholar

[10] S.M. Shaheen, K. Ukai, L. Dai and K. Yamaura: Polymer Int., Vol. 51 (2002), p.1390.

Google Scholar

[11] A.A.A. Queiroz, H.G. Ferraz and G.A. Abraham: Journal of Biomedical Materials Research, Vol. 64A (2003), p.147.

Google Scholar

[12] W.K. Wan, G. Campbell and Z.F. Zhang: Journal of Biomedical Materials Research, Vol. 63 (2002), p.854.

Google Scholar

[13] K. Carbone, M. Casarci and M. Varrone: J. Applied Polymer Sci., Vol. 74 (1999), p.1881.

Google Scholar

[14] S. Yoshioka, Y. Aso, Y. Nakai and S. Kojima: J. Phamaceutical Sci., Vol. 87 (1998), p.147.

Google Scholar

[15] J.W. Rhim, C.K. Yeom and S.W. Kim: Journal of Applied Polymer Science, Vol. 68 (1998), p.1717.

Google Scholar

[16] J.W. Rhim and Y.K. Kim: J. Applied Polymer Science, Vol. 75 (2000), p.1699.

Google Scholar

[17] K. Nakane, T. Yamashita, K. Iwakuka and F. Suzuki: Journal of Applied Polymer Science, Vol. 74 (1999), p.133.

Google Scholar

[18] H. Lin, Y. Watanabe and M. Kimura: Journal of Applied Polymer Science, Vol. 87 (2003), p.1239.

Google Scholar

[19] C. Ione, L. Daniel, A. Angel and M. Carmen: Journal of Polymer Science, Part B: Polymer Physics, Vol. 39 (2001), p. (1968).

Google Scholar

[20] Y.M. Lvov, J.F. Rusling and D.L. Thomsen: Chemical Communications, 1998, p.1229.

Google Scholar

[21] K. Ariga, Y. Lvov and M. Onda: Chemistry Letters, 1997, p.125.

Google Scholar

[22] N.A. Peppas and E.W. Merrill: Journal of Polymer Science, Vol. 14 (1976), p.441.

Google Scholar