[1]
D.J. Sutcliffe, H.S. Yu and A.W. Page: Lower bound limit analysis of unreinforced masonry, Computers & Structures Vol. 79 (2001), pp.125-1312.
DOI: 10.1016/s0045-7949(01)00024-4
Google Scholar
[2]
P.B. Lourenco, J.G. Rots and J. Blaauwendraad: Implementation of an interface cap model for the analysis of masonry structures, Computers & Structures Vol. 51 (1) (1999), pp.123-134.
Google Scholar
[3]
H.R. Lotfi and P.B. Shing: An appraisal of smeared crack models for masonry shear wall analysis, Computers and structures Vol. 41 No. 3 (1991), pp.413-425.
DOI: 10.1016/0045-7949(91)90134-8
Google Scholar
[4]
S.H. Wang, C.A. Tang, F.S. Zhu and W.C. Zhu: Constitutive Damage Model and Its of Numerical Method on Cracking Process of Masonry Structure, Journal of construction structure (in Chinese) Vol. 24 (2) (2003), pp.43-46.
Google Scholar
[5]
Y.J. Chiou, J.C. Tzeng and S.C. Hwang: Discontinuous deformation Analytical for reinforced concrete frames infilled with masonry walls [J], Structural Engineering and Mechanics Vol. 6 (2) (1998), pp.201-215.
DOI: 10.12989/sem.1998.6.2.201
Google Scholar
[6]
C.A. Tang, S.H. Wang and Y.F. Fu: Numerical Test of Rock Failure (Science Press, China 2002).
Google Scholar
[7]
C.A. Tang and W.C. Zhu: Damage and Fracture of Concrete - Numerical Test (Science Press, China 2003).
Google Scholar
[8]
Z. Yan and T. David: Nonlinear dynamic analysis of unreiforced masonry [J], Journal of Structural Engineering Vol. 124 (1) (1998), pp.21-29.
Google Scholar
[9]
Giuseppe Giambanco, Santi Rizzo and Roberto Spallino: Numerical anlysis of masonry structures via interface models, Computer methods in applied mechanics and engineering Vol. 190 (2001), pp.6493-6511.
DOI: 10.1016/s0045-7825(01)00225-0
Google Scholar
[10]
J. Mazars and G. Pijaudier-Cabot: Continuum damage theory - application to concrete, Journal of Engineering Mechanics, ASCE Vol. 115 No. 2 (1987), pp.345-365.
DOI: 10.1061/(asce)0733-9399(1989)115:2(345)
Google Scholar
[11]
Pierre Pegon, Artur V. Pinto and michel Geradin: Numerical modeling of stone-block monumental structures, Computers & Structures Vol. 79 (2001), pp.2165-2181.
DOI: 10.1016/s0045-7949(01)00070-0
Google Scholar
[12]
Z.P. Bazant, M.R. Tabbara, M.T. Kazemi, G. Pijaudier-Cabot: Random particle model for fracture of aggregate or fiber composites, Jeng Mech-ASCE Vol. 116 (8) (1990), pp.1686-1705.
DOI: 10.1061/(asce)0733-9399(1990)116:8(1686)
Google Scholar
[13]
R.A. Vonk, H.S. Rutten, J.G.M. Van Mier and H.J. Finneman: Micro-mechanical simulation of concrete softening, In: Van Mier JGM, Rots JG, Bakker AR, editors, Proceedings of the International RILEM/ESIS Conference, Fracture Processes in Concrete, Rock and Ceramics. Boundary Row, London: E.F.N. Spon (1991).
DOI: 10.1007/bf02472214
Google Scholar
[14]
A.R. Mohamed and W. Hansen: Micromechanical modeling of concrete response understatic loading-Part I: modl development and validation, ACI Mater J, Vol. 96 (2) (1999), pp.196-203.
Google Scholar
[15]
E. Schangen, J.G.M. Van Mier: Experimental and numerical analysis of micromechanisms of fracture of cement-based composites, Cement Concr Comp. Vol. 14 (1992), pp.105-118.
DOI: 10.1016/0958-9465(92)90004-f
Google Scholar
[16]
J.G.M. Van Mier, M.R.A. Van Vliet: Experimental and numerical simulation and the role of engineering judgement in the fracture mechanics of concrete and concrete structures, Constr Build Mater. Vol. 13 (1999), pp.3-14.
DOI: 10.1016/s0950-0618(99)00003-3
Google Scholar
[17]
D.P. Abrams and T.J. Paulson: Modeling Earthequake Reponse of Masonry Building Structures.
Google Scholar
[18]
B.S. Briccoli, G. Ranocchiai, L. Rovero: Amicromechanical model for linear homogenization of brick masonry [J], Materials and Structures/Materiaux Et Constructions Vol. 32 (1999), pp.22-30.
DOI: 10.1007/bf02480408
Google Scholar
[19]
S.H. Wang, C.A. Tang, X. Wu, Y.C. Zhao: Numerical analysis on crack formation, reciprocity and coalescence of masonry structure, Journal of Northeastern University Vol. 23 (in Chinese) (2002), pp.1108-1111.
Google Scholar
[20]
C.A. Tang and S.Q. Kou: Crack propagation and coalescence in brittle materials under compression, Eng Fract Mech. Vol. 61 (1998), pp.311-324.
DOI: 10.1016/s0013-7944(98)00067-8
Google Scholar
[21]
C.X. Shi: Design and theory of masonry structures (Chinese Construction Press, China 1992).
Google Scholar
[22]
T.M.J. Raijmakers and A. Th. Vermeltfoort: Deformation controlled mesoshear tests on masonry piers, Report B-92-1156, Tno-BOUW/Tu Eindhoven, Building and Construction Research, The Netherlands (1992).
Google Scholar