Implementation of a Mesoscopic Mechanical Model for the Shear Fracture Process Analysis of Masonry

Abstract:

Article Preview

This short paper will present a two-dimensional (2D) model of masonry material. This mesoscopic mechanical model is suitable to simulate the behavior of masonry. Considering the heterogeneity of masonry material, based on the damage mechanics and elastic-brittle theory, the new developed Material Failure Process Analysis (MFPA2D) system was brought out to simulate the cracking process of masonry, which was considered as a three-phase composite of the block phase, the mortar phase and the block-mortar interfaces. The crack propagation processes simulated with this model shows good agreement with those of experimental observations. It has been found that the shear fracture of masonry observed at the macroscopic level is predominantly caused by tensile damage at the mesoscopic level. Some brittle materials are so weak in tension relative to shear that tensile rather than shear fractures are generated in pure shear loading.

Info:

Periodical:

Key Engineering Materials (Volumes 297-300)

Edited by:

Young-Jin Kim, Dong-Ho Bae and Yun-Jae Kim

Pages:

1025-1031

DOI:

10.4028/www.scientific.net/KEM.297-300.1025

Citation:

S. H. Wang et al., "Implementation of a Mesoscopic Mechanical Model for the Shear Fracture Process Analysis of Masonry ", Key Engineering Materials, Vols. 297-300, pp. 1025-1031, 2005

Online since:

November 2005

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.