An Elongated Tetrakaidecahedral Cell Model for Fracture in Rigid Polyurethane Foam

Abstract:

Article Preview

A fracture criterion for rigid polyurethane foam is developed based on idealization of constituent cells by elongated tetrakaidecahedra. The ability of the proposed geometrical model to mimic the fracture characteristics of actual rigid polyurethane foam is examined and a fracture criterion derived analytically. In tandem, the fracture properties of an actual rigid polyurethane foam are obtained from mechanical tests. The fracture criterion based on the model exhibits correspondence with the behavior of actual foam. Consequently, this model constitutes a suitable basis for further investigation into the mechanical properties of actual polymeric foams.

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Edited by:

Ichsan Setya Putra and Djoko Suharto

Pages:

43-48

Citation:

M. Ridha et al., "An Elongated Tetrakaidecahedral Cell Model for Fracture in Rigid Polyurethane Foam", Key Engineering Materials, Vols. 306-308, pp. 43-48, 2006

Online since:

March 2006

Export:

Price:

$41.00

[1] Banhart J, Baumeister J. Deformation Characteristic of Metal Foams. Journal of Material Science 1998; 33: 1431-44.

[2] Deshpande VS, Fleck NA. Isotropic constitutive models for metallic foams. Journal of Mechanics and Physics of Solids 2000; 48: 1253-83.

DOI: https://doi.org/10.1016/s0022-5096(99)00082-4

[3] Deshpande VS, Fleck NA. Multi-axial yield behaviour of polymer foams. Acta Materialia 2001; 49: 1859-66.

DOI: https://doi.org/10.1016/s1359-6454(01)00058-1

[4] Doyoyo M, Wierzbicki T. Experimental studies on the yield behaviour of ductile and brittle aluminum foams. International Journal of Plasticity 2003; 19.

DOI: https://doi.org/10.1016/s0749-6419(02)00017-7

[5] Feng Yi, Zhengang Zhu, Fangqiou Zu, Shiseng Zu, Pan Yi. Strain Rate Effects on the EnergyAbsorbing Capacity of Aluminum Alloy Foams. Material Characterization 2001; 47: 417-22.

DOI: https://doi.org/10.1016/s1044-5803(02)00194-8

[6] Gdoutos EE, Daniel IM, Wang KA. Failure of cellular foams under multiaxial loading. Composites Part A 2002; 33: 163-76.

DOI: https://doi.org/10.1016/s1359-835x(01)00110-5

[7] Gibson LJ, Ashby MF. Cellular solids. Structure and properties. Cambridge: Cambridge University Press, 1988, ISBN 0 08 035910 4.

[8] Gibson LJ, Ashby FM, Zhang J, Trianta1llou TC. Failure surfaces for cellular materials under multiaxial loads I: modelling. International Journal of Mechanical Sciences 1989; 31(9): 635-63.

DOI: https://doi.org/10.1016/s0020-7403(89)80001-3

[9] Hanssen AG, Hopperstad OS, Langseth M, Ilstad H. Validation of constitutive models applicable to aluminum foams. International Journal of Mechanical Sciences 2002; 44: 359-406.

DOI: https://doi.org/10.1016/s0020-7403(01)00091-1

[10] Miller RE. A Continuum Plasticity Model for the Constitutive and Indentation Behaviour of Foamed Metals. International Journal of Mechanical Sciences 2000; 42(4): 729-54.

DOI: https://doi.org/10.1016/s0020-7403(99)00021-1

[11] Triantafillou TC, Zhang J, Shercliff TL, Gibson LJ, Ashby MF. Failure surfaces for cellular materials under multiaxial loads II: Comparison of models with experiment. International Journal of Mechanical Sciences 1989; 31: 665-78.

DOI: https://doi.org/10.1016/s0020-7403(89)80002-5

[12] Zaslawsky M. Multiaxial-stress studies on rigid polyurethane foam. Experimental Mechanics 1973; 2: 70-76.

[13] Zhu, HX, Knott JF, Mills NJ. Analysis of the elastic properties of open-cell foams with tetrakaidecahedral cells. Journal of the mechanics and physics of solids 1997; 45(3): 319-43.

DOI: https://doi.org/10.1016/s0022-5096(96)00090-7