Strength Anisotropy Estimation of Plain-Weave Fabrics by Pseudo-Continuum Model

Article Preview

Abstract:

The anisotropy of the tensile strength of plain-weave fabric is numerically evaluated by the finite element simulations. The plain-weave fabrics show complicated deformation behavior that is quite different from that of the continuum. The mechanics of woven fabric is not sophisticated yet enough to evaluate the strength and fracture mechanism in arbitrary stress conditions. The opacity of the tensile strength significantly diminishes the material reliability for the advanced use of fabrics. This study addresses the ideal tensile strength in arbitrary directions by using the pseudo-continuum model, which we have proposed to predict the deformation behavior and fiber stresses of the plain-weave fabrics. In this study, the numerical simulations of uniaxial extension in various directions are carried out by one finite element subjected to ideally uniform deformation, and we predict the breaking loads and elongations corresponding to the ultimate strength of the fiber.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 306-308)

Pages:

835-840

Citation:

Online since:

March 2006

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Haas: NACA Report No. 16 (1918), pp.155-250.

Google Scholar

[2] F. T. Peirce: J. Textile Institute Vol. 28 (1937), pp. T45-T96.

Google Scholar

[3] K. Weissenberg: J. Textile Institute Vol. 40 (1949), pp. T89-T110.

Google Scholar

[4] W. F. Kilby: J. Textile Institute Vol. 54 (1963), pp. T9-T27.

Google Scholar

[5] B. Olofsson: J. Textile Institute Vol. 55 (1964), pp. T541-T557.

Google Scholar

[6] S. Kawabata, M. Niwa and H. Kawai: J. Textile Institute Vol. 64 (1973), pp.21-46.

Google Scholar

[7] S. Kawabata, M. Niwa and H. Kawai: J. Textile Institute Vol. 64 (1973), pp.47-61.

Google Scholar

[8] N. C. Huang: Trans. ASME J. Appl. Mech. Vol. 46 (1979), pp.651-655.

Google Scholar

[9] S. Y. Luo and A. Mitra: Trans. ASME J. Appl. Mech. Vol. 66 (1999), pp.631-638.

Google Scholar

[10] S. Kato, T. Yoshino and H. Minami: Engineering Structures Vol. 21 (1999), pp.691-708.

Google Scholar

[11] A. Tabiei and I. Ivanov: Int. J. Numer. Meth. Engng. Vol. 53 (2002), pp.1259-1276.

Google Scholar

[12] I. Ivanov and A. Tabiei: Int. J. Numer. Meth. Engng. Vol. 61 (2004), pp.1565-1583.

Google Scholar

[13] R. R. Tanov and M. Brueggert: Finite Elements in Analysis & Des. Vol. 39 (2003), pp.357-367.

Google Scholar

[14] O. Kuwazuru and N. Yoshikawa: JSME Int. J. Vol. 47 A (2004), pp.17-25.

Google Scholar

[15] O. Kuwazuru and N. Yoshikawa: JSME Int. J. Vol. 47 A (2004), pp.26-34.

Google Scholar

[16] O. Kuwazuru and N. Yoshikawa: Proc. Regional Conf. Aeronautical Sci. Tech. Industry 2004 (2004), pp.137-147.

Google Scholar

[17] H. Minami, H. Toyoda and W. Ying: J. Soc. Mat. Sci., Japan Vol. 41 (1992), pp.445-450.

Google Scholar

[18] N. Pan and M. Y. Yoon: Textile Res. J. Vol. 66 (1996), pp.238-244.

Google Scholar