Chemical Composition and Mechanical Properties of Bio-Derived Compact Bone Scaffolds

Abstract:

Article Preview

To compare the chemical composition and mechanical properties of the bio-derived compact bone scaffold (BDCBS) with the normal compact bone in human. Human compact bone were harvested and divided into control and experimental group. For the latter, BDCBS was prepared with physical and chemical methods. The major components (calcium, phosphorus, collagen protein) and heavy metal contents of the two groups were determined with biochemical assay. Histological examinations were performed to investigate the structure. Cylindroids from the normal compact bone and the BDCBS (6 in each group) were tested under compression. There was no significant difference between the two groups for major components. In addition, there were a few amounts of heavy metal components in BDCBS and control. Histological examinations confirmed the acellular structure in the BDCBS. Results from mechanical testing showed the compressive strength, elastic modulus and ultimate strain (193MPa, 13.76GPa, and 2.3%) of the BDCBS were a bit lower than those (205MPa, 15.67GPa, and 2.5% respectively) of control, but the differences were not statistically significant. In conclusion, there are almost the same matrix structure and composition with similar biomechanical properties between the BDCBS and the control. These results may underscore the potential of the BDCBS in tissue engineering bone.

Info:

Periodical:

Key Engineering Materials (Volumes 309-311)

Main Theme:

Edited by:

Takashi Nakamura, Kimihiro Yamashita and Masashi Neo

Pages:

891-894

DOI:

10.4028/www.scientific.net/KEM.309-311.891

Citation:

T. W. Qin et al., "Chemical Composition and Mechanical Properties of Bio-Derived Compact Bone Scaffolds ", Key Engineering Materials, Vols. 309-311, pp. 891-894, 2006

Online since:

May 2006

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.