Size Effect of Shear Fracture Energy of Concrete in Uniaxial Compression Based on Gradient-Dependent Plasticity

Article Preview

Abstract:

Gradient-dependent plasticity where a characteristic length is involved into yield function is adopted to calculate the thickness of shear band (SB) and the distribution of plastic shear strain in SB. The characteristic length reflecting the heterogeneous extent of texture only controls SB’s thickness. The local plastic shear strain in SB is highly non-uniform. The total fracture energy is the sum of pre-peak and post-peak fracture energies. The pre-peak part is described by the nonlinear Scott model and depends on the height of specimen. The post-peak part is calculated through the derived post-peak relative stress-plastic deformation curve. If the inclination angle of SB is not influenced by the height, then the slope of post-peak relative stress-plastic deformation curve and the post-peak fracture energy are independent of the height. The total fracture energy is linearly size-dependent as the pre-peak fracture energy is linearly related to the height. The slope of postpeak relative stress-plastic deformation and the total fracture energy are verified through previous experiments for normal concrete in uniaxial ompression.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

299-304

Citation:

Online since:

June 2006

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2006 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Z.P. Bažant and E.P. Chen: Appl. Mech. Rev. Vol. 50 (1997), p.593.

Google Scholar

[2] Y. -W. Mai, R.M.L. Foote and B. Cotterell: Int. J. Cement Comp. Vol. 2 (1980), p.23.

Google Scholar

[3] Y. -W. Mai, H. He and R. Leung et al: ASTM Spec. Tech. Publ. (1995), p.587.

Google Scholar

[4] J. Wu and Y. -W. Mai: Polym. Engrg. Sci. Vol. 36 (1996), p.2275.

Google Scholar

[5] Z. H. Jin and Y. -W. Mai: J. Am. Ceram. Soc. Vol. 78 (1995), p.1873.

Google Scholar

[6] B. Cottrell and Y. -W. Mai: J. Mater. Sci. Vol. 22 (1987), p.2734.

Google Scholar

[7] S. P. Shah: Mater. Struct. Vol. 23 (1990), p.461.

Google Scholar

[8] K. Duan, X. Hu, and F.H. Wittmann: Mater. . Struct. Vol. 35 (2002), p.326.

Google Scholar

[9] Z.P. Bažant and M.T. Kazemi: Int. J. Fract. Vol. 44 (1990), p.111.

Google Scholar

[10] X.H. Ji, S.Y.N. Chan and N.Q. Feng: Mag. Concrete Res. Vol. 49 (1997), p.253.

Google Scholar

[11] X.H. Guo and R.I. Gilbert: Mater. Struct. Vol. 33 (2000), p.309.

Google Scholar

[12] X.B. Wang, S.H. Dai and L. Hai et al: J. Univ. Sci. Tech. Beijing Vol. 11 (2004), p.197.

Google Scholar

[13] X.B. Wang, S.H. Dai and L. Hai et al: T. Nonferrous Met. Soc. China Vol. 13 (2003), p.1348.

Google Scholar

[14] X.B. Wang, M. Yang and Y.S. Pan: Key Engrg. Mater. Vol. 274-276 (2004), p.99.

Google Scholar

[15] X. B. Wang, Y. S. Pan: J. Wuhan Univ. Tech. -Mater. Sci. Ed., Vol. 18 (2003), p.89.

Google Scholar

[16] X.B. Wang, M. Yang and H.J. Yu et al: T. Nonferrous Met. Soc. China Vol. 14 (2004), p.335.

Google Scholar

[17] X.B. Wang, M. Yang: J. Iron Steel Res. Int. Vol. 12 (2005), p.34.

Google Scholar

[18] N.S. Ottosen: J. Engng. Mech. ASCE Vol. 112 (1986), p.1152.

Google Scholar

[19] E. Kuhl, E. Ramm and R. de Borst: Comput. Methods Appl. Mech. Engrg. Vol. 183 (2000), p.87.

Google Scholar

[20] X.B. Wang, Y.S. Pan and Q. Sheng: Rock Soil Mech. Vol. 22 (2001), p.323. (in Chinese).

Google Scholar

[21] D.C. Jansen and S.P. Shah: J. Engrg. Mech. ASCE Vol. 123 (1997), p.25.

Google Scholar

[22] P. Mendis, R. Pendyala and S. Setunge: Mag. Concrete Res. Vol. 52 (2000), p.227.

Google Scholar