Internal Friction and Mechanical Strength of Hydrogenated Ti-Rich Multicomponent Glassy Alloys

Abstract:

Article Preview

The hydrogen-induced internal friction and mechanical strength of the Ti-rich Ti34Zr11Cu47Ni8 and (Ti34Zr11Cu47Ni8)98Si2 hydrogenated glassy alloys have been investigated. It is found that the tensile strength is more than 0.8 GPa at room temperature when the hydrogen content is below about 20 at% for both alloys. The frequency dependence of peak temperature of the hydrogen-induced internal friction of (Ti34Zr11Cu47Ni8)98Si2-17.3 at%H hydrogenated glassy alloys has been clarified. Activation energy and pre-exponential factor are estimated to be 0.35 eV and 1.3x10-12, respectively. Compared with these values with those of Zr40Cu49Al10Si1 hydrogenated glassy alloys which show an internal friction peak around 300 K at about 300 Hz, it is found that the activation energy is much smaller than that of the latter although the pre-exponential factor is almost the same. Considering their similar composition and different component (Al), it is suggested that the component Al of the latter glassy alloys is effective for the higher activation energy which results in the increase of the peak temperature.

Info:

Periodical:

Edited by:

N. Igata and S. Takeuchi

Pages:

139-144

DOI:

10.4028/www.scientific.net/KEM.319.139

Citation:

M. Hasegawa et al., "Internal Friction and Mechanical Strength of Hydrogenated Ti-Rich Multicomponent Glassy Alloys", Key Engineering Materials, Vol. 319, pp. 139-144, 2006

Online since:

September 2006

Export:

Price:

$35.00

[1] A. Inoue: Mater. Trans. JIM Vol. 36 (1995), p.866.

[2] W. L. Johnson: Mater. Sci. Forum Vol. 225-227 (1996), p.35.

[3] T. Yagi, R. Oguro, R. Tamura, S. Takeuchi: Mater. Res. Soc. Symp. Proc. (MRS2000), Mater. Res. Soc. (2001) p. L11. 10. 1.

[4] T. Yagi, T. Imai, R. Tamura, S. Takeuchi: Mater. Sci, Eng. Vol. 370 (2004), p.264.

[5] S. Takeuchi, T. Yagi, T. Imai, R. Tamura: Mater. Sci. Eng. A Vol. 375-377 (2004), p.455.

[6] H. -R. Sinning: J. Alloys Compnd. Vol. 310 (2000), p.224.

[7] R. Scarfone, H. R. Sinning: J. Alloys Compnd. Vol. 310 (2000), p.229.

[8] H. Mizubayashi, S. Murayama, H. Tanimoto: J. Alloys Compnd. Vol. 330-332 (2002), p.389.

[9] H. Mizubayashi, Y. Ishikawa, H. Tanimoto: Mater. Trans. Vol. 43 (2002), p.2662.

[10] H. Mizubayashi, Y. Ishikawa, H. Tanimoto: J. Alloys Compmd. Vol. 355 (2003), p.31.

[11] H. Mizubayashi, Y. Ishikawa, H. Tanimoto: Mater. Sci, Eng. Vol. 370 (2004), p.546.

[12] M. Hasegawa, S. Yamaura, H. Kato, K. Amiya, N. Nishiyama, A. Inoue: J. Alloys Compnd. Vol. 355 (2003), p.37.

[13] M. Hasegawa, K. Kotani, S. Yamaura, H. Kato, I. Kodama and A. Inoue: J. Alloys and Compnd. Vol. 365 (2004), p.221.

[14] M. Hasegawa, M. Takeuchi, H. Kato, S. Yamaura and A. Inoue: J. Alloys Compnd. Vol. 372 (2004), p.116.

[15] M. Hasegawa, M. Takeuchi, H. Kato and A. Inoue: Acta Materia Vol. 52 (2004), p.1799.

[16] M. Hasegawa, M. Takeuchi and A. Inoue: Acta Materia Vol. 53 (2005), p.5297.

[17] M. Hasegawa, M. Takeuchi, D. Nagata, T. Wada, H. Kato, Y. Yamaura and A. Inoue: Maters. Sic. Eng. submitted.

[18] K. Itoh and T. Fukunaga: private communications.

[19] T. Takeuchi, S. Nakano, K. Soda, H. Sato, M. Hasegawa, U. Mizutani, K. Itoh, T. Fukunaga: Mater. Trans. (2005) in press.

[20] T. Takeuchi, S. Nakano, K. Soda, H. Sato, M. Hasegawa, U. Mizutani, K. Itoh, T. Fukunaga: Mater. Sic. Eng. submitted.

In order to see related information, you need to Login.