High Damping Performance of Hydrogenated Bulk Metallic Glasses

Abstract:

Article Preview

Hydrogenated Zr-Cu-base metallic glasses (MGs) are the potential high-damping and high-strength materials. On the other hand, the knowledge on the material parameters which govern the peak temperature, Tp, and the peak height, Q-1 p, of the hydrogen internal friction peak (HIFP) remains poor. In order to pursue this issue, the hydrogen concentration dependence of Tp and Q-1 p in the Zr-Cu-base MGs were investigated in the point of view of the hydrogen induced structural relaxation (HISR). It is found that the Tp vs. CH data and the Q-1 p vs. CH data are well fitted by the relationships of Tp = Tp exp(-CH/τH) +Tp,0 and Qp -1 ∝ ln(CH/τH), respectively, for various Zr-Cu-base MGs including bulk MGs, Zr55Cu30Al10Ni5 and Zr60Cu30Al10. That is, the observed relationship between Tp and CH is mainly governed by HISR. It is suggested that Tp,0 in Zr-Cu-base MGs is the highest among various MGs resulting in the highest Tp in Zr-Cu-base MGs. In other words, the control of Tp,0 is the key issue to find the high-Tp MGs.

Info:

Periodical:

Edited by:

N. Igata and S. Takeuchi

Pages:

133-138

DOI:

10.4028/www.scientific.net/KEM.319.133

Citation:

H. Mizubayashi et al., "High Damping Performance of Hydrogenated Bulk Metallic Glasses", Key Engineering Materials, Vol. 319, pp. 133-138, 2006

Online since:

September 2006

Export:

Price:

$35.00

[1] H. Mizubayashi, S. Murayama and H. Tanimoto, J. Alloys and Compd. 330-332 (2002), p.389.

[2] H. Mizubayashi, Y. Ishikawa and H. Tanimoto, Mater. Trans. 43 (2002), p.2662.

[3] H. Mizubayashi, Y. Ishikawa and H. Tanimoto, J. Alloys and Compd. 355 (2003), p.31.

[4] M. Hasegawa, S. Yamamura, H. Kato, K. Amiya, N. Nishiyama and A. Inoue, J. Alloys and Compd. 355 (2004), p.37.

[5] M. Hasegawa, K. Kotani, S. Yamaura, H. Kato, I. Kodama and A. Inoue, J. Alloys and Compd. 365 (2004), p.221.

[6] M. Hasegawa, M. Takeuchi, H. Kato, S. Yamaura and A. Inoue, J. Alloys and Compd. 372 (2004), p.116.

[7] M. Hasegawa, M. Takeuchi, H. Kato and A. Inoue, Acta Mater. 52 (2004), p.1799.

[8] T. Yagi, T. Imai, R. Tamura and S. Takeuchi, Mater. Sci. Eng. A 370 (2004), p.264.

[9] H. Mizubayashi, Y. Ishikawa and H. Tanimoto, Mater. Sci. Eng. A 370 (2004), p.546.

[10] M. Matsumoto, H. Mizubayashi and S. Okuda, Acta metall. mater. 43 (1995), p.1109.

[11] H. Mizubayashi, T. Naruse and S. Okuda, Phys. Stat. Sol. (a) 132 (1992), p.79.

[12] H. Mizubayashi, H. Agari and S. Okuda, Phys. Stat. Sol (a) 122 (1990), p.221.

[13] A.J. Maeland, Rapidly Quenched Metals, Edited by S. Steeb, H. Warlimont (Elsevier, Amsterdam, 1985), p.1507.

[14] K. Samwer and W.L. J ohnson, Phys. Rev. B 28 (1983), p.2907.

[15] K. Aoki, A. Horata and T. Matsumoto, Proc. 4th Int. Conf. on Rapidy Quenched Metals, Edited by T. Matsumoto and K. Suzuki (Japan Inst. Metal, Sendai, 1982), p.1649.

[16] H. Mizubayashi, M. Shibasaki and S. Murayama, Acta Mater. 48 (2000), p.279.

[17] B.S. Berry and W.C. Pritchet, Mater. Sci. Eng. 97 (1988), p.41.

[18] L.K. Varga, K. Tompa, A. Lovas, J.M. Jobert and A. Percheron-Guegan, Int. J. Hydrogen Energy 21 (1996), p.927.

[19] S. Hatta, J. Nishioka and T. Mizoguchi, Proc. 4th Int. Conf. on Rapidy Quenched Metals, Edited by T. Matsumoto and K. Suzuki (Japan Inst. Metal, Sendai, 1982), p.1613.

In order to see related information, you need to Login.