The Effect of the Property of Non-Linear Viscosity on the Interfacial Debonding of Particulate-Reinforced Polymers

Abstract:

Article Preview

The debonding of a rigid particle embedded in an infinite non-linear viscoelastic material is investigated in this paper. Under sphere-symmetric deformation, a non-linear equilibrium equation expressed by velocity of a particle in the viscoelastic matrix material is derived. The strain rate is obtained by solving non-linear equation in terms of iterative method. According to the energy criterion, the critical instant of the interfacial debongding is calculated. Numerical results show that the influence of non-linear viscosity on the interfacial debonding is significant.

Info:

Periodical:

Key Engineering Materials (Volumes 324-325)

Edited by:

M.H. Aliabadi, Qingfen Li, Li Li and F.-G. Buchholz

Pages:

113-116

DOI:

10.4028/www.scientific.net/KEM.324-325.113

Citation:

J. K. Chen and L. H. Chang, "The Effect of the Property of Non-Linear Viscosity on the Interfacial Debonding of Particulate-Reinforced Polymers", Key Engineering Materials, Vols. 324-325, pp. 113-116, 2006

Online since:

November 2006

Export:

Price:

$35.00

[1] W. Zuiderduin, C. Westzaan, J. Huétink, RJ. Gaymans, Polymer Vol. 44 (2003), p.261.

DOI: 10.1016/s0032-3861(02)00769-3

[2] A.S. Argon, R.E. Cohen, Polymer Vol. 44 (2003), p.6013.

[3] M. Avella, M.E. Errico, E. Martuscelli, Nano Letters Vol. 1 (2001), p.213.

[4] T. Lan, T.J. Pinnavaia, Chem Mater Vol. 6 (1994) p.2216.

[5] J.K. Chen, Z.P. Huang, Y.W. Mai, Acta Materialia Vol. 51(2003) p.3375.

[6] J.K. Chen, Z.P. Huang, and S.L. Bai, Key Engineering Materials Vol. 312 (2006) p.111.

[7] J.K. Chen, Z.P. Huang, and S.L. Bai, Acta Mechanica Solida Sinica, Vol. 12(1999) p.1.

[8] P.J. Wei, J.K. Chen, Acta Mechanica, Vol. 164(2003) p.217.

[9] H.J. Chu, J.K. Chen, Journal of Yangzhou University, Vol. 4(2001) p.20.

2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1 0.

5 1.

[1] 5 2.

[2] 5 β tcr (s) γ=0. 05J/m2 dε∞/dt=0. 001 1/s a=1µm a=5µm a=20µm 0 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7 0. 8 0. 9 1 x 10 -4 0.

2.

4.

6.

8 1.

[1] 2.

[1] 4 a (m) tcr (s) γ=0. 03J/m2 γ=0. 05J/m2 γ=0. 1J/m2.

4 0. 41 0. 42 0. 43 0. 44 0. 45 0. 46 0. 47 0. 48 0. 49 0. 5 0.

2.

4.

6.

8 1.

[1] 2.

[1] 4.

[1] 6.

[1] 8 ν tcr (s) a=1µm a=5µm a=20µm 8 8 8 8 0. 001 1/s γ=0. 05 J/m2.

01 0. 02 0. 03 0. 04 0. 05 0. 06 0. 07 0. 08 0. 09 0. 1 0.

2.

4.

6.

8 1.

[1] 2.

[1] 4 γ (J/m2) tcr (s) a=1µm a=5µm a=20µm Fig. 1 Plot of tcr virsus β Fig. 2 Plot of tcr virsus a Fig. 3 Plot of tcr virsus ν Fig. 4 Plot of tcr virsus γ.

DOI: 10.1107/s0021889812047085/ks5332sup2.txt

In order to see related information, you need to Login.