Research on the In Situ Fabrication of Bioceramic Composite Coatings by Laser Cladding

Abstract:

Article Preview

Hydroxyapatite(HAP) has excellent osteoconductive properties. By controlling the Ca/P ratio better biphasic calcium phosphate ceramics can be produced than pure HAP ceramics. β- calcium pyrophosphate(β-Ca2P2O7) is a new biodegradable ceramic material and its biological response is quite similar to HAP. Obtaining HAP and other bioactive calcium phosphate ceramic coatings has been a popular research field in the past. In our research a new bioceramic composite coating was obtained by laser cladding with pre-depositing mixed powders of CaHPO4·2H2O and CaCO3 directly on the metal substrate. Its main constituents are HAP and β-Ca2P2O7. The microstructure of the coating consists of minute granular HAP that is distributed among the overlapped club-shaped or needle-like β-Ca2P2O7. The hardness distribution in the cladding layer is even and its value is much higher than that in the substrate. There is a bonded structure of the epitaxial planar growth between the substrate and cladding layer, and both a typical cellular microstructure in the middle and an equiaxed microstructure at the top of the cladding layer.

Info:

Periodical:

Key Engineering Materials (Volumes 330-332)

Main Theme:

Edited by:

Xingdong Zhang, Xudong Li, Hongsong Fan, Xuanyong Liu

Pages:

625-628

DOI:

10.4028/www.scientific.net/KEM.330-332.625

Citation:

Y. C. Wang et al., "Research on the In Situ Fabrication of Bioceramic Composite Coatings by Laser Cladding", Key Engineering Materials, Vols. 330-332, pp. 625-628, 2007

Online since:

February 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.