Flaw Tolerant Ceramic Laminates with Negligible Residual Stresses between Layers

Article Preview

Abstract:

Ceramic laminates can be designed to combine high strength with flaw tolerance. In this paper, the designing approach based on the mechanical response of residual stresses free biological layered structures is revised. The main design tools are analysed and different ceramic-ceramic systems combining stiffness, high strength and flaw tolerance with thermo-mechanical stability are described. Two main approaches have been used depending on the relative toughness of the layers and the interfaces between them. Laminates constituted by layers separated by weak interfaces, to originate crack deflection and delamination along the interface, show high thermal shock resistance but limited resistance to shear stresses and, thus, to wear. Laminates with strong interfaces that combine stiff and high strength external layers with flaw tolerant internal ones are appropriate for wear applications. In this group of materials, the combination of layers with the same phase composition and different microstructures avoids residual stresses due to thermal expansion mismatch, but the attainment of such microstructural differences implies the co-sintering of layers with large differences in the green state. The generation “in situ” during sintering of the desired microstructural differences represents an interesting alternative in terms of processing for this group of materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

17-26

Citation:

Online since:

March 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.J. Clegg: Mater. Sci. Technol. Vol. 14 (1998), p.483.

Google Scholar

[2] H.M. Chan: Annu. Rev. mater. Sci. Vol. 27 (1997), p.249.

Google Scholar

[3] G. de Portu, J. Gurauskis, L. Micele, A.J. Sánchez-Herencia, C. Baudín, G. Pezzotti: J. Mater. Sci., in press. Published on-line 10 th April (2006).

DOI: 10.1007/s10853-006-2508-z

Google Scholar

[4] R.F. Cook: J. Am. Ceram. Soc. Vol. 88, (2005), p.2798.

Google Scholar

[5] J. Gurauskis, A.J. Sánchez-Herencia, C. Baudín: J. Eur. Ceram. Soc. (2006), in press.

Google Scholar

[6] M.P. Rao, A.J. Sánchez-Herencia, G.E. Beltz, R.M. McMeeking, F.F. Lange: Science Vol. 286 (1999), p.102.

Google Scholar

[7] K.E. Gunnison, M. Sarikaya, J. Liu, I.A. Aksay, in Hierarchically Structured Materials, edited by I.A. Aksay, E. Baer, M. Sarikaya, D.A. Tirrel, Materials Research Society, Pittsburgh, Penn. USA (1992), p.171.

DOI: 10.1557/proc-255-293

Google Scholar

[8] J.D. Currey, P. Zioupos, P. Davies, A. Casinos: Proc. R. Soc. London Ser. B. Biological Sciences Vol. 268 (2001), p.107.

Google Scholar

[9] J.D. Currey: Science Vol. 309 (2005), p.253.

Google Scholar

[10] A.G. Evans, Z. Suo, R.Z. Wang, I.A. Aksay, M.Y. He, J.W. Hutchinson: J. Mat. Res. Vol. 16 (2001), p.2475.

Google Scholar

[11] R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, I.A. Aksay: J. Mat. Res. Vol. 16 (2001), p.2485.

Google Scholar

[12] D.R. Katti, K.S. Katti: J. Mat. Sci. Vol. 36 (2001), p.1411.

Google Scholar

[13] K. Katti, D.R. Katti, J. Tang, S. Pradhan, M. Sarikaya: J. Mat. Sci. Vol. 40 (2005), p.1749.

Google Scholar

[14] I.A. Aksay, M. Sarikaya, in Ceramics toward the 21 st century, edited by N. Soga, A. Kato, The Ceramic Society of Japan, Tokyo (1991), p.136.

Google Scholar

[15] I.A. Aksay, D.M. Dabbs, J.T. Staley, M. Sarikaya, in Ceramics toward the 21 st century, edited by N. Soga, A. Kato, The Ceramic Society of Japan, Tokio (1991), p.1.

Google Scholar

[16] E.H. Lutz, S.E. Brunings, R.W. Steinbrech: Ceram. Eng. Sci. Proc. Vol. 19 (1998), p.457.

Google Scholar

[17] A. Hiltner, K. Sung, E. Shin, S. Bazhenov, J. Im, E. Baer, in Hierarchically Structured Materials, edited by I.A. Aksay, E. Baer, M. Sarikaya, D.A. Tirrel, Materials Research Society, Pittsburgh, Penn. USA (1992), p.141.

Google Scholar

[18] A.A. Abdala, D.L. Milius, D.H. Adamson, I.A. Aksay: Abstracts of Papers of the American Chemical Society Vol. 227 (2004), p. U525.

Google Scholar

[19] W.J. Clegg: Acta Metall. Mater. Vol. 40 (1992), p.3085.

Google Scholar

[20] A.J. Philipps, S.J. Howard, W.J. Clegg, T.W. Clyne: Composites Vol. 7 (1994), p. E24.

Google Scholar

[21] J.X. Zhang, D.L. Jiang, Sh.Y. Qin, Zh.R. Huang: Ceramics International Vol. 30 (2004), p.697.

Google Scholar

[22] L.Y. Ming, P. Wei, L. ShuQuin, C. Jian, W. RuiGang, L. JianQuiang: Ceramics International Vol. 28 (2002), p.223.

Google Scholar

[23] L. Zou, Y. Huang, R. Chen, C. An Wang, D. Park: J. Eur. Ceram. Soc. Vol. 23 (2003), p. (1987).

Google Scholar

[24] J.B. Davis, A. Kristoffersson, E. Carlstrom, W.J. Clegg: J. Am. Ceram. Soc. Vol. 83 (2000), p.2369.

Google Scholar

[25] J. Ma, H. Wang, L. Weng, G.E.B. Tan: J. Eur. Ceram. Soc. Vol. 24 (2004), p.825.

Google Scholar

[26] W.J. Clegg: Science Vol. 286 (1999), p.1097.

Google Scholar

[27] M.Y. He, J.W. Hutchinson: Int. J. Solids Structures Vol. 25 (1989), p.1053.

Google Scholar

[28] M.Y. He, A.G. Evans, J.W. Hutchinson: Int. J. Solids Structures Vol. 31 (1994), p.3443.

Google Scholar

[29] W.J. Clegg, K. Kendall, N. McN. Alford, J.D. Birchall, T.W. Button: Nature Vol. 347 (1990), p.45.

Google Scholar

[30] H. Liu, S. M. Hsu: J. Am. Ceram. Soc. Vol. 79 (1996), p.2452.

Google Scholar

[31] Q. Zan, C. Wang, Y. Huang, S. Zhao, C. Li: Ceramics International Vol. 30 (2004), p.441.

Google Scholar

[32] D.H. Kuo, W.M. Kriven: Materials Science and Engineering Vol. A241 (1998), p.241.

Google Scholar

[33] D. Kim, W.M. Kriven: J. Am. Ceram. Soc. Vol. 86 (2003), p. (1962).

Google Scholar

[34] P.E.D. Morgan, D.B. Marshall: J. Am. Ceram. Soc. Vol. 78 (1995), p.1553.

Google Scholar

[35] J.R. Rice: J. Appl. Mech. Vol. 55 (1988), p.98.

Google Scholar

[36] K.S. Chan, M.Y. He, J.W. Hutchinson: Materials Science and Engineering Vol. A167 (1993), p.57.

Google Scholar

[37] A.J. Philipps, S.J. Howard, W.J. Clegg, T.W. Clyne: Acta Metall. Mater. Vol. 41 (1993), p.805.

Google Scholar

[38] A.J. Philipps, S.J. Howard, W.J. Clegg, T.W. Clyne: Acta Metall. Mater. Vol. 41 (1993), p.819.

Google Scholar

[39] C.A. Folsom, F.W. Zok, F.F. Lange: J. Am. Ceram. Soc. Vol. 77 (1994), p.689.

Google Scholar

[40] M.Y. He, C.H. Hsuch, P.F. Becher: Composites: Part B Vol. 31 (2000), p.299.

Google Scholar

[41] S. Roham, K. Hardikar, P. Woytowitz: J. Mater. Res. Vol. 19 (2004), pp.3019-3027 (2004).

Google Scholar

[42] J.W. Hutchinson, Z. Suo: Advances in Applied Mechanics Vol. 29 (1992), p.63.

Google Scholar

[43] C.J. Russo, M.P. Harmer, H.M. Chan, G.A. Miller: J. Am. Ceram. Soc. Vol. 75 (1992), p.3396.

Google Scholar

[44] S. Wuttiphan, B.R. Lawn, N.P. Padture: J. Am. Ceram. Soc. Vol. 79 (1996), p.634.

Google Scholar

[45] L. An, H.M. Chan, N.P. Padture, B.R. Lawn: J. Mater. Res. Vol. 11 (1996), p.204.

Google Scholar

[46] H. Liu, B.R. Lawn, S.M. Hsu: J. Am. Ceram. Soc. Vol. 79 (1996), p.1009.

Google Scholar

[47] L. An, H.M. Chan, N.P. Padture, B.R. Lawn: J. Mater. Res. Vol. 11 (1996), p.204.

Google Scholar

[48] L. An, H. Ha, H.M. Chan: J. Am. Ceram. Soc. Vol. 81 (1998), p.3321.

Google Scholar

[49] K. Morsi, H. Keshavan, S. Bal: Materials Science and Engineering Vol. 386 (2004), p.384.

Google Scholar

[50] I.M. Low: Materials Research Bulletin Vol. 33 (1998), p.1475.

Google Scholar

[51] L. An, H.M. Chan: J. Am. Ceram. Soc. Vol. 79 (1996), p.3142.

Google Scholar

[52] D.G. Brandon, O. Glozman, L. Baum, R. Grylls, in Proceedings of the Third Euro-Ceramics, edited by P. Durán, J.F. Fernández, Faenza Editrice Ibérica S. L., Madrid (1993), p.725.

Google Scholar

[53] S. Bueno, C. Baudín: J. Mat. Sci., in press. Published on-line 5 th April (2006).

Google Scholar

[54] S. Bueno, C. Baudín: J. Eur. Ceram. Soc., in press. Accepted January (2006).

Google Scholar

[55] G. de Portu, S. Bueno, L. Micele, C. Baudín, G. Pezzotti: J. Eur. Ceram. Soc., in press. Published on-line 13 September (2005).

Google Scholar