High Strain Rate Deformation Behavior of Mg–Al–Zn Alloys at Elevated Temperatures

Abstract:

Article Preview

High temperature deformation behavior of AZ31 and AZ91 magnesium alloys was examined by compression tests over a wide strain rate range from 10–3 to 103 s–1 with emphasis on the behavior at high strain rates. The dominant deformation mechanism in the low strain rate range below 10–1 s–1 was suggested to be climb-controlled dislocation creep. On the other hand, experimental results indicated that the deformation at a high strain rate of ~103 s–1 proceeds by conventional plastic flow of dislocation glide and twinning even at elevated temperatures. The solid-solution strengthening was operative for high temperature deformation at ~103 s–1.

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Edited by:

N. Ohno and T. Uehara

Pages:

107-112

Citation:

H. Watanabe et al., "High Strain Rate Deformation Behavior of Mg–Al–Zn Alloys at Elevated Temperatures", Key Engineering Materials, Vols. 340-341, pp. 107-112, 2007

Online since:

June 2007

Export:

Price:

$38.00

[1] A. Takara, Y. Nishikawa, H. Watanabe, H. Somekawa, T. Mukai and K. Higashi: Mater. Trans. Vol. 45, (2004), p.2377.

[2] A. Takara, Y. Nishikawa, H. Watanabe, H. Somekawa, T. Mukai and K. Higashi: Mater. Trans. Vol. 45 (2004), p.2531.

[3] T. Mukai, H. Watanabe and K. Higashi: Mater. Sci. Tech. Vol. 16 (2000), p.1314.

[4] T. Mukai, H. Watanabe and K. Higashi: Mater. Sci. Forum Vol. 350-351 (2000), p.159.

[5] R.E. Reed-Hill and W.D. Robertson: Acta Metall. Vol. 5 (1957), p.728.

[6] H. Watanabe, T. Mukai, M. Kohzu, S. Tanabe and K. Higashi: Acta Mater. Vol. 47 (1999), p.3753.

[7] H. Watanabe, T. Mukai, M. Mabuchi and K. Higashi: Acta Mater. Vol. 49 (2001), p. (2027).

[8] H. Watanabe, T. Mukai and K. Higashi: Metall. Mater. Trans. Vol. 32A (2001), p.923.

[9] T. Shimizu: Alutopia Vol. 31 No. 4 (2001), p.41.

[10] S. Hama and F. Watanabe: J. Japan Inst. Light Metals Vol. 51 (2001), p.514.

[11] H.J. Frost, M.F. Ashby: Deformation-mechanism maps (Pergamon Press, UK 1982), p.153.

[12] O. Sivakesavam, I.S. Rao and Y.V.R.K. Prasad: Mater. Sci. Tech. Vol. 9 (1993), p.805.

[13] A. Mwembela, E.B. Konopleva and H.J. McQueen: Scripta Mater. Vol. 37 (1997), p.1789.

[14] ASM Specialty Handbook, Magnesium and Magnesium alloys, edited by M.M. Avedesian and H. Baker AMS Int., Materials Park, OH (1999), p.278.

[15] T. Mukai, M. Yamanoi and K. Higashi: Mater. Trans. Vol. 42 (2001), p.2652.

[16] A.G. Beer and M.R. Barnett, in: Magnesium Technology 2002, edited by H.I. Kaplan TMS, Warrendale, PA (2002), p.193.

[17] L. Cisar, Y. Yoshida, S. Kamado, Y. Kojima and F. Watanabe: Mater. Trans. Vol. 44 (2003), p.476.

[18] Q. Guo, H.G. Yan, H. Zhang, Z.H. Chen and Z.F. Wang: Mater. Sci. Tech. Vol. 21 (2005), p.1349.

[19] H. Watanabe, A. Takara, H. Somekawa, T. Mukai and K. Higashi: Scripta Mater. Vol. 52 (2005) p.449.

[20] K. Ishikawa, H. Watanabe and T. Mukai: J. Mater. Sci. Vol. 40 (2005), p.1577.

[21] K. Ishikawa, H. Watanabe and T. Mukai: Mater. Lett. Vol. 59 (2005), p.1511.

[22] H. Watanabe, T. Mukai, M. Sugioka and K. Ishikawa: Scripta Mater. Vol. 51 (2004), p.291.

[23] H.J. Frost, M.F. Ashby: Deformation-mechanism maps (Pergamon Press, UK 1982), p.43.

[24] S-E. Hsu, G.R. Edwards and O.D. Sherby, Acta Metall. Vol. 31 (1983), p.763.

[25] W-J. Kim, S.W. Chung, C.S. Chung and D. Kum, Acta Mater. Vol. 49 (2001), p.3337.

[26] T. Mukai, M. Yamanoi, H. Watanabe, K. Ishikawa and K. Higashi: Mater. Trans. Vol. 42 (2001), p.1177.

[27] S.W. Chung, H. Watanabe, W-J. Kim and K. Higashi: Mater. Trans. Vol. 45 (2004), p.1266.

[28] H. Somekawa, K. Hirai, H. Watanabe, Y. Takigawa and K. Higashi: Mater. Sci. Eng. Vol. A407 (2005), p.53.

[29] D.H. Sastry, Y.V.R.K. Prasad, KI. Vasu: Scripta Mater. Vol. 3 (1969), p.923.

[30] J. Friedel: Dislocations (Pergamon Press, UK 1964).

Fetching data from Crossref.
This may take some time to load.