Effects of Strain Rate and Temperature on Yield Locus for AZ31 Magnesium Alloy Sheet

Abstract:

Article Preview

The yield locus of type AZ31 magnesium alloy sheet was obtained by performing biaxial tensile tests, using cruciform specimens, at temperatures of 100, 150, 200, 250 and 300 P o PC at strain rates of 10P -2 P, 10P -3 P and 10P -4 PsP -1 P. Based on the experimental results, the effects of strain-rate and temperature on the yield locus was discussed. The size of yield locus drastically decreased with increasing temperature and decreased with decreasing strain-rate. Neither von Mises’s criterion or Hill’s can well predict the shape of the yield locus of this sheet metal. Instead of these quadratic yield functions, the yield criterion of Logan-Hosford or Barlat is a better choice for the accurate description of biaxial stress-strain responses at high temperature.

Info:

Periodical:

Key Engineering Materials (Volumes 340-341)

Edited by:

N. Ohno and T. Uehara

Pages:

119-124

Citation:

T. Naka et al., "Effects of Strain Rate and Temperature on Yield Locus for AZ31 Magnesium Alloy Sheet", Key Engineering Materials, Vols. 340-341, pp. 119-124, 2007

Online since:

June 2007

Export:

Price:

$38.00

[1] E. Aghion and B. Bronfin: Mater. Sci. Forum Vol. 350-351 (2000), p.19.

[2] H. Friedrich and S. Schumann: J. Mater. Process. Technol, Vol. 117 (2001), p.276.

[3] E. Doege and K. Dröder: J. Mater. Process. Technol, Vol. 115 (2001), p.14.

[4] H. Takuda, T. Morishita, T. Kinoshita and N. Shirakawa: J. Mater. Process. Technol, Vol. 164-165 (2005), p.1258.

[5] J. Kaneko, M. Sugamata, M. Numa, Y. Nishikawa and H. Takada: J. Jpn. Inst. Met. Vol. 64 (2000), p.141.

[6] S. Aida, H. Tanabe, H. Sugai, I. Takano, H. Ohnuki and M. Kobayashi: J. Jpn. Inst. Light Met. Vol. 50 (2000), p.456.

[7] H. Somekawa, M. Kohzu, S. Tanabe and H. Higashi: Mater. Sci. Forum Vol. 350-351 (2000), p.177.

[8] M. Kohzu, F. Yoshida, H. Somekawa, M. Yoshikawa, S. Tanabe and K. Higashi: Mater. Trans. Vol. 42 (2001), p.1273.

[9] E. Shiratori K. Ikegami, F. Yoshida, K. Kaneko and S. Koike: Bulletin of the JSME, Vol. 19 (1976), p.877.

[10] E. Shiratori K. Ikegami and F. Yoshida: Bulletin of the JSME, Vol. 19 (1976), p.1122.

[11] Y. Tozawa and M. Nakamura: J. of the Jpn. Soc. Tech. Plasticity, Vol. 13-138 (1972), p.538 (in Japanese).

[12] F. Barlat, J. C. Brem, J. W. Yoon, K. Chung, R. E. Dick, D. J. Lege, F. Pourboghrat, S. -H. Choi and E. Chu: Int. J. Plasticity, Vol. 19 (2003), p.1297.

[13] T. Kuwabara, I. Susuki and S. Ikeda: J. of the Jpn. Soc. Tech. Plasticity, Vol. 39-444 (1998), p.56 (in Japanese).

[14] T. Naka, Y. Nakayama, T. Uemori, R. Hino and F. Yoshida: Key Eng. Mater. Vol. 274-276 (2004), p.937.

[15] R. W. Logan and W. F. Hosford: J. Mech. Sci: Vol. 22-7 (1980), p.419.

Fetching data from Crossref.
This may take some time to load.