Biodegradable Porous PCL/HA Scaffolds for Bone Tissue Engineering

Abstract:

Article Preview

Poly ε-caprolactone(PCL)/hydroxyapatite(HA) composite scaffolds were fabricated by particulate leaching and freeze drying routes with different HA content. Porosity was decreased with HA addition, while mean pore size was maintained at around porogen size regardless of HA content. Compressive modulus was increased with increasing HA content. In this study, the optimum content of HA was around 40% in weight against PCL to obtain the highest compressive modulus with keeping porosity above 85%. HA apparently enhanced proliferation of osteoblast-like MG63 cells in PCL/HA composite scaffolds. Typical adhesion, migration and aggregation procedure of MG63 cells were found on PCL, while spreading morphology only was found on HA even at the early stage of adhesion without migration or aggregation.

Info:

Periodical:

Key Engineering Materials (Volumes 342-343)

Edited by:

Young-Ha Kim, Chong-Su Cho, Inn-Kyu Kang, Suk Young Kim and Oh Hyeong Kwon

Pages:

77-80

DOI:

10.4028/www.scientific.net/KEM.342-343.77

Citation:

S. E. Kim et al., "Biodegradable Porous PCL/HA Scaffolds for Bone Tissue Engineering", Key Engineering Materials, Vols. 342-343, pp. 77-80, 2007

Online since:

July 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.