Stress Analysis during Crack-Crazing Patterns Interactions: A Mathematical Approach

Abstract:

Article Preview

In this study, interactions between a main crack and a surrounding layer of crazing patterns are considered. Analysis of the stress field distribution induced during these interactions is based on the resolution of some differential equations along with appropriate boundary conditions and the use of a numerical approach. These equations are established according to Mohr’s criteria since the craze growth occurs along directions parallel to the minor principal stress axis. Because this damage can constitute an important toughening mechanism, the mode I stress intensity factor (SIF) is employed to quantify the effects on a crack of the damage consisting of crazing patterns. It is proven, herein, that crazes closer to the main crack dominate the resulting interaction effect and reflect an antishielding of the damage while a reduction constitutes a material toughness.

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

1617-1620

Citation:

M. Chabaat and H. Seddiki, "Stress Analysis during Crack-Crazing Patterns Interactions: A Mathematical Approach", Key Engineering Materials, Vols. 345-346, pp. 1617-1620, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] D. Post, Proceedings of Society for Experimental Stress Analysis 12 (1954), p.99.

[2] J. Botsis, A. Chudnovsky and A. Moet: Int. J. of Fracture, Parts I and II, Vol. 33, (1987), p.263.

[3] M. Chabaat: Int. Journal of Fracture, Vol. 37, (1988), p.47.

[4] A. Chudnovsky, I. Palley and E. Baer: Int. Journal of Materials Science, Vol. 16, (1981).

[1] 2 3 4 5 6 7 8 9 10 x 10 -301.

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] x 10 150 0. 5 0. 5 0. 5 0. 5 0. 5.

[1] 1.

[1] [1] 1 1. 5 1. 5 1. 5 1. 5 1. 5.

[2] [2] [2] [2] 2 2. 5 2. 5 2. 5 2. 5.

[3] [3] 3 3 r(mm) Sigma1.

[1] 2 3 4 5 6 7 8 9 10 x 10 -301.

[2] [4] [6] [8] [10] [12] [14] [16] x 10 150 1e-301 1e-301 1e-301 2e-301 2e-301 2e-301 3e-301 3e-301 3e-301 4e-301 4e-301 4e-301 5e-301 5e-301 5e-301 6e-301 6e-301 6e-301 7e-301 7e-301 7e-301 8e-301 8e-301 8e-301 9e-301 9e-301 9e-301 1e-300 1e-300 1e-300 theta(rad) Sigma1' 0. 5 1 1. 5 2 2. 5 3.

DOI: https://doi.org/10.1038/scientificamerican03181916-301

[2] [4] [6] [8] [10] [12] [14] [16] x 10 150 5e-300 5e-300 5e-300 1e-299 1e-299 1e-299 1. 5e-299 1. 5e-299 1. 5e-299 2e-299 2e-299 2e-299 2. 5e-299 2. 5e-299 2. 5e-299 3e-299 3e-299 3e-299 3. 5e-299 3. 5e-299 3. 5e-299 4e-299 4e-299 4e-299 4. 5e-299 4. 5e-299 4. 5e-299 5e-299 5e-299 5e-299 5. 5e-299 5. 5e-299 5. 5e-299 theta(rad) Sigma2' 0. 5 1 1. 5 2 2. 5 3.

DOI: https://doi.org/10.1201/b13633-20

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] x 10 149 1e-301 1e-301 1e-301 2e-301 2e-301 2e-301 3e-301 3e-301 3e-301 4e-301 4e-301 4e-301 5e-301 5e-301 5e-301 6e-301 6e-301 6e-301 7e-301 7e-301 7e-301 8e-301 8e-301 8e-301 9e-301 9e-301 9e-301 1e-300 1e-300 1e-300 theta(rad) Sigma2' -3 -2. 5 -2 -1. 5 -1 -0. 5.

DOI: https://doi.org/10.1038/scientificamerican11081884-301

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] x 10 150 2e-299 2e-299 2e-299 4e-299 4e-299 4e-299 6e-299 6e-299 6e-299 8e-299 8e-299 8e-299 1e-298 1e-298 1e-298 1. 2e-298 1. 2e-298 1. 2e-298 1. 4e-298 1. 4e-298 1. 4e-298 theta(rad) Sigma1' -3 -2. 5 -2 -1. 5 -1 -0. 5 0.

DOI: https://doi.org/10.1016/s0040-4039(01)80715-2

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] x 10 149.

Fetching data from Crossref.
This may take some time to load.