Connection among the Characteristics of the Low Cycle Fatigue, High Cycle Fatigue and Fatigue Crack Growth

Abstract:

Article Preview

The material quality, the deformation rate, the temperature and the stress state influence mechanical behaviour and properties of different materials. Due to this great variety of the influencing factors we do not have one model of general validity describing the behaviour of materials, but we have to use a great number of material constants in order to characterize the properties. The exponents of the Manson-Coffin, the Basquin and the Paris-Erdogan laws were applied for the verification of the connection among the fatigue fracture types. Own measured values and test results can be found in the literature were used for the illustration of the connections. “Fracture surface”-s were determined for characterizing of different steel grades and their welded joints. It can be concluded that “fracture surface”-s are suitable for the describing of the fracture behaviour and the conversion of different fracture parameters of steels.

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

533-536

Citation:

G. Nagy and J. Lukács, "Connection among the Characteristics of the Low Cycle Fatigue, High Cycle Fatigue and Fatigue Crack Growth ", Key Engineering Materials, Vols. 345-346, pp. 533-536, 2007

Online since:

August 2007

Export:

Price:

$38.00

[1] S.S. Manson: NASA Report 1170. (1954).

[2] Á. Zsáry: Méretezés kifáradásra a gépészetben, Mőszaki Könyvkiadó, Budapest. (1965).

[3] P. Paris, and F. Erdogan: Journal of Basic Engineering, Trans. of the ASME. (1963), p.528.

[4] P.K. Liaw, A. Saxena and J. Perrin:, Eng. Fract. Mech. Vol. 45 (1993) p.759.

[5] H.A.L. Aberasturi, J.M.R. Ibabe and M.F. Perez, in: Proc. of ECF9: Reliability and Structural Integrity of Advanced Materials, edited by S. Sedmak, A. Sedmak, and D. Ruzis, EMAS (1992).

[6] C. Boller, and T. Seeger: Materials Data for Cyclic Loading. Part B. (Elsevier 1987).

[7] V.T. Troshhenko and L.A. Sosnovskij: Soprotivlenie ustalosti metallov i splavov (Naukova Dumka 1987).

[8] ASM Handbook, Vol. 19 - Fatigue and Fracture (ASM 1996).

[9] L. Tóth, Gy. Nagy and P. Romvári, in: Proc. of the 7th European Conference on Fracture, edited by E. Czoboly, EMAS (1988).

[10] J. Lukács:, Publ. of the Univ. of Miskolc, Series C, Mech. Engng., Vol. 46 (1996) p.77.

[11] J. Lukács:, Mater. Sci. Forum Vol. 414-415 (2003) p.31.

[12] I. Török: Publ. of the Univ. of Miskolc, Series C, Mech. Engng. Vol. 46 (1996) p.33.

[13] C. Boller and T. Seeger:, Materials Data for Cyclic Loading. Part D, (Elsevier 1987).

[14] J.B. Lee and D.N. Lee, in: Proc. of the Sixth International Conference on Fracture, edited by S. R. Valluri, et al. Pergamon Press ().

[15] J. -K. Lim, S. -J. Hwang, O. -Y. Lee et al., in: Proc. of the Sixth International Fatigue Congress, edited by G. Lütjering and H. Nowack, Pergamon, Elsevier (1996).

[16] J. Byrne, N.Y.K. Kan, I.W. Hussey and G.F. Harrison, in: Proc. of the Sixth International Fatigue Congress, edited by G. Lütjering and H. Nowack, Pergamon, Elsevier (1996).

[17] C. Moura Branco, C.: Lecture notes - Preprints of the NATO ASI (1995).

[18] Databook on Fatigue Strength of Metallic Materials (Elsevier 1996).

[19] G. Costa Junior, F.A. Darwish and H.H. El-Sharaway:, Proc. of the Seventh International Fatigue Congress, edited by X. R. Wu and Z. G. Wang, HEP-EMAS (1999).