Effects of Microstructures on the Mechanical Properties of Dilute Al-Si Alloys

Abstract:

Article Preview

In this paper, we investigated effects of aging at 473K on the relationship between microstructure in the vicinity of the grain boundaries and fatigue strength for Al-1.2%Si alloy. Results obtained show the following features. (1) As aging time, tA increase, the tensile strength (σB) and 0.2% proof stress (σ0.2) increase slowly, but gradually decrease after reaching a maximum at around 18 ks. On the other hand, fracture elongation shows an opposite trend, suggesting that at aging times above 18ks, over aging occurs. (2) The fatigue strength lowers with increasing aging time, however, when the aging time is more than 18 ks at 473K, the fatigue strength remains almost the same. (3) When the aging time is more than 6 ks, grain boundary precipitates with a size greater than several 10s of nm are observed. (4) When the aging time is 18 ks, an accumulation of dislocations are observed at the grain boundaries and in the vicinity of grain boundary precipitates, and dislocations increase with the number of stress cycles. (5) When the aging time is more than 6 ks, the fatigue fracture surface is mainly intergranular. These results suggest that reduction of fatigue strength results from propagation of micro-cracks which are initiated at the large precipitates on the grain boundaries.

Info:

Periodical:

Key Engineering Materials (Volumes 345-346)

Edited by:

S.W. Nam, Y.W. Chang, S.B. Lee and N.J. Kim

Pages:

821-824

DOI:

10.4028/www.scientific.net/KEM.345-346.821

Citation:

K. Nakagawa and T. Kanadani, "Effects of Microstructures on the Mechanical Properties of Dilute Al-Si Alloys", Key Engineering Materials, Vols. 345-346, pp. 821-824, 2007

Online since:

August 2007

Export:

Price:

$35.00

In order to see related information, you need to Login.

In order to see related information, you need to Login.