Consolidation and Properties of Tungsten Carbide Target with Low Cobalt Content by Hot-Press Sintering

Abstract:

Article Preview

Tungsten carbide (WC) targets with low cobalt (Co) content (0.1 - 0.2 wt.%) were prepared by hot-press sintering at 1700°C for 60 minutes in argon, from element starting powders of tungsten, cobalt and carbon. Results show that the as-fabricated targets yield relatively high relative density above 99% and high HRA above 92. WC with low Co content is formed easily than pure WC. The hot-press sintering process, while element starting powders are used, is an in-situ reaction technique for accelerating the WC’s diffusion rate to obtain a dense sintered body.

Info:

Periodical:

Main Theme:

Edited by:

Di Zhang, Jingkun Guo and Chi Y. A. Tsao

Pages:

98-102

Citation:

G. Q. Shao et al., "Consolidation and Properties of Tungsten Carbide Target with Low Cobalt Content by Hot-Press Sintering", Key Engineering Materials, Vol. 351, pp. 98-102, 2007

Online since:

October 2007

Export:

Price:

$38.00

[1] E. Lassner and W-D. Schubert: Tungsten - Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Kluwer Academic Plenum Publishers, London, UK 2000).

[2] G.S. Upadhyaya: Cemented Tungsten Carbides - Production, Properties, and Testing (Noyes Publications, Westwood, New Jersey, USA 1998).

[3] S. Imasato, K. Tokumoto, T. Kitada and S. Sakaguchi: Int'l. J. Ref. Metals & Hard Mater. Vol. 13 (1997), p.305.

[4] H. Engqvist, G.A. Botton, N. Axen and S. Hogmark: Int'l. J. Ref. Metals & Hard Mater. Vol. 16 (1998), p.309.

[5] H. Engqvist, G.A. Botton, N. Axen and S. Hogmark: J. Am. Ceram. Soc. Vol. 83 (2000), p.2491.

[6] M.J. Ledoux, C.H. Pham, J. Guille and H. Dunlop: J. Catal. Vol. 134 (1992), p.383.

[7] R. Koc and S.K. Kodambaka: J. Eur. Ceram. Soc. Vol. 20 (2000), p.1859.

[8] C. Strondl, N.M. Carvalho, J. Th.M. De Hosson and T.G. Krug: Surf. Coat. Technol. Vol. 200 (2005), p.1142.

[9] C. Strondl, N.M. Carvalho, J. Th.M. De Hosson and G.J. van der Kolk: Surf. Coat. Technol. Vol. 162 (2003), p.288.

[10] C. Rincón, J. Romero, J. Esteve, E. Martínez and A. Lousa: Surf. Coat. Technol. Vol. 163-164 (2003), p.386.

[11] M. Omori: Mater. Sci. Eng. A. Vol. 287 (2000), p.183.

[12] S.I. Cha and S.H. Hong: Mater. Sci. Eng. A. Vol. 356 (2003), p.381.

[13] B. Huang, L.D. Chen and S.Q. Bai: Scripta Mater. Vol. 54 (2006), p.441.

[14] H-C. Kim, In-Jin Shon, J.E. Garay and Z.A. Munir: Int'l. J. Ref. Metals & Hard Mater. Vol. 22 (2004), p.257.

[15] X.L. Shi, G.Q. Shao, X.L. Duan, Z. Xiong, H. Yang: Mater. Character. Vol. 57 (2006), p.358.

[16] G.Q. Shao, X.L. Duan, J.R. Xie, X.H. Yu, W.F. Zhang and R.Z. Yuan: Rev. Adv. Mater. Sci. Vol. 5 (2003), p.281.

[17] G.Q. Shao, X.H. Yu, X.L. Shi, X.L. Duan, W.F. Zhang, Z.L. Yi, C. Wang and P. Sun: Key Eng. Mater. Vol. 280-283 (2005), p.1485.

[18] X.L. Shi, G.Q. Shao, X.L. Duan, R.Z. Yuan and H.H. Lin: Mater. Sci. Eng. A. Vol. 392 (2005), p.335.

[19] G.Q. Shao, B.L. Wu, X.L. Duan, J.R. Xie, M.K. Wei and R.Z. Yuan, in: Innovative Processing / Synthesis: Ceramics, Glasses, Composites IV, edited by N.P. Bansal and J.P. Singh, The American Ceramic Society, Ohio, USA (2000), p.375.

[20] G.Q. Shao, X.L. Duan, B.L. Wu, J.R. Xie, M.K. Wei and R.Z. Yuan:, in: Advances in Ceramic Matrix Composites VI, edited by J.P. Singh, N.P. Bansal and E. Ustundag, The American Ceramic Society, Ohio, USA (2000), p.207.

[21] O. Kubaschewski and C. B. Alcock: Metallurgical Thermochemistry (Pergamon Press Ltd., Headington Hill Hall, Oxford OX30BW, England 1979).

[22] C.D. Park, H.C. Kim, I.J. Shon and Z.A. Munir: J. Am. Ceram. Soc. Vol. 85 (2002), p.2670.

Fetching data from Crossref.
This may take some time to load.