Investigating Morphology Evolution of Damage by a Cellular Automaton Modelling

Article Preview

Abstract:

A two-dimensional cellular automaton (CA) model is developed to simulate damage and fracture morphology evolution on the mesoscale in materials. The plastic convection of damage is mapped onto the CA lattice, and initiation, propagation and coalescence of damage are simulated with a local rule-based scheme of a probability cellular automaton. The model includes known physical distinctions of fracture behavior between microcracks and microvoids, and they are characterized by modifying the probability rule of the cellular automaton. The simulations provide visual insight to understand how those physical processes dynamically progress and they affect the damage evolution in materials. The modeling can be used to link micromechanical models to continuum damage models.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 353-358)

Pages:

1060-1063

Citation:

Online since:

September 2007

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2007 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Matic and A.B. Geltmacher: Comp. Mater. Sci., Vol. 20 (2001), p.120.

Google Scholar

[2] L. Nastac: Acta mater., Vol. 47 (1999), p.4253.

Google Scholar

[3] M. Rappaz and Ch. -A. Gandin: Acta metall., Vol. 41 (1993), p.345.

Google Scholar

[4] Ch. -A. Gandin and M. Rappaz: Acta mater., Vol. 45 (1997), p.2187.

Google Scholar

[5] J. A. Spittle and S.G.R. Brown: J. Mater. Sci., Vol. 30 (1995), p.3989 A. Jacot and M. Rappaz: Acta Mater., Vol. 45 (1997), p.575.

Google Scholar

[6] Y. Saito, G. Goldbeck-Wood and H. Muller-Krumbhaar: Phys. Rev. A, Vol. 38 (1988), p.2148.

Google Scholar

[7] H.W. Hesselbarth and I.R. Gobel: Acta metall., Vol. 39 (1991), p.2135.

Google Scholar

[8] L. Zhang, C. B. Zhang, Y. M. Wang, S. Q. Wang and H.Q. Ye: Acta Mater., Vol. 51 (2003), p.5519.

Google Scholar

[9] L. Zhang, C.B. Zhang, Y. M. Wang, X. H. Liu and G.D. Wang: J. Mater. Res., Vol. 17 (2002), p.2251.

Google Scholar

[10] Ch. -A. Gandin, M. Rappaz, and R. Tintillier: Metall. Trans., Vol. 24A (1993), p.467.

Google Scholar

[11] M. Rappaz, Ch. -A. Gandin, J. -L. Desbiolles and Ph. Thevoz: Metall. Mater. Trans. A, Vol. 27 (1996), p.695.

Google Scholar

[12] Ch. -A. Gandin and M. Rappaz: Acta Mater., Vol. 45 (1997), p.2187.

Google Scholar

[13] Ch. Charbon and M. Rappaz: Modell. Simul. Mater. Sci. Eng., Vol. 1 (1993), p.455.

Google Scholar

[14] J. A. Spittle and S. G. R. Brown: J. Mater. Sci., Vol. 30 (1995), p.3989.

Google Scholar

[15] Y. Goldbeck-Wood G. Saito and H. Muller-Krumbhaar: Physi. Rev. A, Vol. 38 (1988), p.2148.

Google Scholar

[16] H. W. Hesselbarth and I. R. Gobel: Acta metall., Vol. 39 (1991), p.2135.

Google Scholar

[17] C. Beckermann and R. Viskanta: Appl. Mech. Rev., Vol. 46 (1993), p.1.

Google Scholar

[18] L. Zhang, Y. M. Wang and C. B. Zhang: Acta. Metall. Sin., Vol. 37(2001), p.882.

Google Scholar

[19] L. Zhang, C. B. Zhang, X. H. Liu, G. D. Wang and Y. M. Wang: J Mater. Sci. Tech., Vol. 18(2002), p.163.

Google Scholar

[20] L. Zhang, Y. M. Wang, C.B. Zhang, S. Q. Wang and H. Q. Ye: Modelling Simul. Mater. Sci. Tech., Vol. 11(2003), p.791.

Google Scholar

[21] S. Wolfram: Phys. D, Vol. 10 (1984), p.7.

Google Scholar