High Brightness White Organic Light Emitting Devices Employing Phosphorescent Iridium Complex as RGB Dopants

Article Preview

Abstract:

An efficient phosphorescent white organic light-emitting diode (WOLED) was realized by using a bright blue-emitting layer, iridium (III) bis [(4, 6-di-fluoropheny)-pyridinato-N, C2’] picolinate doped 4.4’-bis (9-carbazolyl)-2, 2’-dimethyl-biphenyl, together with tris (2- Phenylpyridine) iridium and bis (1-phenyl-isoquinoline) acetylacetonate iridium (III) were codoped into 4,4’-N,N’-dicarbazole-biphenyl layer to provide blue, green, and red emission for color mixing. The device emission color was controlled by varying dopant concentrations and the thickness of blue and green-red layers as well as tuning the thickness of exciton-blocking layer. The maximum luminance and power efficiency of the WOLED were 37100cd/m2 at 17 V and 7.37lm/W at 5V, respectively. The Commission Internationale de 1’Eclairage (CIE) chromaticity coordinate changes from (0.41, 0.42) to (0.37, 0.39) when the luminance rangeed from 1000cd/m2 to 30000cd/m2.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 364-366)

Pages:

1072-1076

Citation:

Online since:

December 2007

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Kido, M. Kimura and K. Nagai: Science. Vol. 267 (1995), p.1332.

Google Scholar

[2] R. S. Deshpande, V. Bulovic and S. R. Forrest: Appl. Phys. Lett. Vol. 75 (1999), p.888.

Google Scholar

[3] B.W. D'Andrade, M. E. Thompson and S. R. Forrest: Adv. Mater. Vol. 14 (2002) p.147.

Google Scholar

[4] T. Tsuzuki, N. Shirasawa, T. Suzuki, and S. Tokito: Adv. Mater. (Weinheim, Ger. ), Vol. 15(2003), p.1455.

Google Scholar

[5] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest: Appl. Phys. Lett., Vol. 75(1999), p.4.

Google Scholar

[6] C. Adachi, M. A. Baldo, S. R. Forrest, S. Lamansky, M. E. Thompson, and R. C. Kwong: Appl. Phys. Lett., Vol. 78 (2001), p.1622.

DOI: 10.1063/1.1355007

Google Scholar

[7] B. W. D'Andrade, M. E. Thompson, and S. R. Forrest: Adv. Mater. Vol. 14(2002), p.147.

Google Scholar

[8] B. W. D'Andrade, R. J. Holmes, and S. R. Forrest: Adv. Mater. Vol. 16(2004), p.624.

Google Scholar

[9] B. W. D'Andrade, J. Brooks, V. Adamovich, M. E. Thompson, and S. R. Forrest: Adv. Mater. Vol. 14(2002), p.1032.

Google Scholar

[10] S. Tokito, T. Lijima, T. Tsuzuki, and F. Sato: Appl. Phys. Lett. Vol. 83(2003), p.2459.

Google Scholar

[11] X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, and A. J. Heeger: Adv. Mater. Vol. 16(2004), p.615.

Google Scholar

[12] M. Suzuki, T. Hatakeyama, S. Tokito, and F. Sato: IEEE J. Sel. Top. Quantum Electron. Vol. 10 (2004), p.115.

Google Scholar

[13] F. Li, G. Cheng, Y. Zhao, J. Feng, S. Y. Liu, M. Zhang, Y. G. Ma, and J. C. Shen: Appl. Phys. Lett. Vol. 83 (2003), p.4716.

Google Scholar

[14] J. P. Duan, P. P. Sun, and C. H. Cheng: Adv. Mater. (Weinheim, Ger. ), Vol. 15 (2003), p.224.

Google Scholar

[15] C. H. Yang, K. H. Fang, W. L. Su, S. P. Wang, S. K. Su, and I. W. Sun: J. Organomet. Chem., Vol. 691 (2006), p.2767.

Google Scholar

[16] G. Cheng, Y.F. Zhang, Y. Zhao, Y. Lin, C.Y. Ruan, S. Y. Liu, T. Fei, Y. G. Ma and Y.X. Cheng: Appl. Phys. Lett. Vol. 89(2006), p.043504.

DOI: 10.1063/1.2227645

Google Scholar

[17] S. Tokito, T. Iijima, Y. Suzuri, H. Kita, T. Tsuzuki and F. Sato: Appl. Phys. Lett. Vol. 83(2003), p.569.

DOI: 10.1063/1.1594834

Google Scholar