The Preparation and Properties of TiN/Carbon Coatings by Ion Beam Assistant Magnetron Spurting Deposition

Article Preview

Abstract:

TiN/carbon multilayer coatings were deposited on M2 and GCr15 wafers by ion beam assistant magnetron spurting deposition (IBMSD). The hardness, elastic modulus, fracture toughness, adhesion strength and tribological properties were investigated. The results show that TiN coating by means of static recoil N+ doped interface preparation and Ar+ beam assistant magnetron spurting has 2 times adhesion strength, 5 times hardness of none-beam-assistant TiN coating. The wear rate of GCr15 wafer with TiN(2h)/Carbon(4h) multilayer coating is 0.36×10-15m3/Nm,1/5 of that of GC15 wafer without coating. The wear rate of M2 wafer with TiN(2h)/Carbon(4h) multilayer coating is 2.8×10-15m3/Nm, 1/8 of that of M2 wafer without coating. The friction coefficient of GCr15 wafter with TiN(2h)/Carbon(4h) multilayer coating is lower than 0.15, and that is 0.04 for M2 wafer. These results indicate that thickness ratio of TiN to carbon is important for the tribological properties of TiN/carbon coating, thick lubricant carbon/thin load-support TiN multilayer coating has better comprehensive tribological properties.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 373-374)

Pages:

146-150

Citation:

Online since:

March 2008

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2008 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Stuber, V. Schier and H. Holleck, Surf. Coat. Technol., Vol. 74-75(1995), p.838.

Google Scholar

[2] C.V. Cooper, P. Holiday and A. Matthews: Surf. Coat. Technol., Vol. 63(1994), p.129.

Google Scholar

[3] B. Schultrich, H. -J. Scheibe, D. Drescher and H. Ziegele: Surf. Coat. Technol., Vol. 98(1998), p.1097.

Google Scholar

[4] J. Koskinen, H. Ronkainen, J.P. Hirvonen, R. Lappalainen and K.A. Pischow: Diamond Relat. Mater., Vol. 4(1995), p.843.

Google Scholar

[5] W. Zhang, A. Tanaka, K. Wazumi, Y. Koga and B.S. Xu: Diamond Relat. Mater., Vol. 13(2004), p.2166.

Google Scholar

[6] H. Ronkainen, J. Likonen, J. Koskinen and S. Varjus: Surf. Coat. Technol., Vol. 79(1996), p.87.

Google Scholar

[7] A. Grill: Wear, Vol. 168(1993), p.143.

Google Scholar

[8] C. Donnet: Surf. Coat. Technol., Vol. 100-101(1998), p.180.

Google Scholar

[9] A.M. Peters and M. Nastasi: Surf. Coat. Technol., Vol. 167(2003), p.25.

Google Scholar

[10] V. Palshin, E.I. Meletis, S. Ves and S. Logothetidis: Thin Solid Coatings, Vol. 270(1995), p.165.

DOI: 10.1016/0040-6090(95)06912-7

Google Scholar

[11] P.X. Yan and Q.M. Song: Mater. Chem. Phys., Vol. 58(1999), p.195.

Google Scholar

[12] C.A. Davis: Thin Solid Coatings, Vol. 447-448(2004), p.174.

Google Scholar

[13] Y. Lifshitz, G.D. Lempert, S. Roter, I. Avigal, C. Uzan-Saguy, R. Kalish, J. Kulik, D. Marton and J.W. Rabalais: Diamond Relat. Mater., Vol. 3(1994), p.542.

DOI: 10.1016/0925-9635(94)90220-8

Google Scholar

[14] J. Robertson: Diamond Relat. Mater., Vol. 3(1994), p.361.

Google Scholar

[15] A.A. Voevodin, S.D. Walck and J.S. Zabinski: Wear, Vol. 203-204(1997), p.516.

Google Scholar

[16] A.A. Voevodin, P. Stevenson, J.M. Schneider and A. Matthews: Vacuum, Vol. 46(1995), p.723.

Google Scholar