Ferroelectric and Luminescent Properties of Electroluminescence Devices Using Ferroelectric Polymer-Phosphor Composite Films

Article Preview

Abstract:

We fabricated and characterized electroluminescence (EL) devices using ferroelectric polyvinylidene fluoride/trifluoroethylene (PVDF/TrFE) copolymer composites mixed with Mn- and Cu-activated ZnS phosphor particles. Spin-coated polymer composite films on glass substrates with transparent conductive oxides were dried at 140 oC for 1 h in vacuum due to growth of ferroelectric phase. The maximum remnant polarization and luminescence of the fabricated devices were approximately 20 μC/cm2 and 100 cd/m2, respectively. Increases of the luminescence were observed in the fabricated EL devices using PVDF/TrFE copolymer in comparison with using PVDF polymer as dielectrics. EL emission intensities were also enhanced by applying the bipolar pulses. These results suggest an effect of polarization reversal in the composite films.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

137-140

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C. J. Dias and D. K. Das-Gupta, in Ferroelectric Polymer and Ceramic Polymer Composites, edited by D. K. Das-Gupta (Trans Tech Publications Ltd., Switzerland, 1994), p.217.

DOI: 10.4028/www.scientific.net/kem.92-93.217

Google Scholar

[2] R. L. Bush and P. K. Sysak, EL panel made with low molecular weight PVDF/HFP resin, US Patent 6445128, 09/03/(2002).

Google Scholar

[3] P. Dario, M. Carrozza, A. Benvenuto, and A. Menciassi, J. Micromech. Microeng., 10 (2000) p.235.

DOI: 10.1088/0960-1317/10/2/322

Google Scholar

[4] Q. M. Zhang, H. F. Li, M. Poh, H. S. Xu, Z. -Y. Cheng, F. Xia, and C. Huang, Nature (London) 419 (2002) p.282.

Google Scholar

[5] K. N. Narayanan Unni, R. de Bettignies, S. Dabos-Seignon, and J. -M. Nunzi, Appl. Phys. Lett., 85 (2004) p.1823.

DOI: 10.1063/1.1788887

Google Scholar

[6] K. Muller, I. Paloumpa, K. Henkel, and D. Schmeisser, J. Appl. Phys., 98 (2005) p.056104.

Google Scholar

[7] A. Gerber, H. Kohlstedt, M. Fitsilis, R. Waser, T. J. Reece, S. Ducharme, and E. Rije, J. Appl. Phy., 100 (2006) p.24110.

Google Scholar

[8] S. H. Noh, W. C. Choi, M. S. Oh, D. K. Hwang, K. Lee, S. Im, S. Jang, and E. Kim, Appl. Phys. Lett., 90 (2007) p.253504.

Google Scholar

[9] S. Fujisaki, H. Ishiwara, and Y. Fujisaki, Appl. Phys. Lett., 90 (2007) p.162902.

Google Scholar

[10] H. Xu, J. Zhong, X. Liu, and J. Chen, Appl. Phys. Lett., 90 (2007) p.092903.

Google Scholar

[11] T. Furukawa, H. Matsuzaki, M. Shiina, and Y. Tajitsu, Jpn. J. Appl. Phys., 24 (1985) p. L661.

Google Scholar

[12] Y. Liu and C. -N. Xu, Appl. Phys. Lett., 84 (2004) p.5016.

Google Scholar

[13] K. Tashiro, Ferroelectric Polymers, edited by H. Nalwa (Marcel Dekker, New York, 1995) p.63.

Google Scholar

[14] P. R. Thornton, The Physics of Electroluminescent Devices, Series Editor by E. J. Burge (E. & F. N. Spon Limited, London, 1967), p.120.

Google Scholar

[15] Y. A. Ono, H. Kawakami, M. Fuyama, and K. Onisawa, Jpn. J. Appl. Phys., 26 (1987) 1482. Author to whom correspondence should be addressed; e-mail: aizawa@neptune. kanazawa-it. ac. jp.

Google Scholar