Temperature Dependence of Cathodoluminescence for AlN Ceramics Sintered with Ca3Al2O6

Article Preview

Abstract:

Aluminum nitride ceramics were sintered with 1.0 and 4.8 mass% Ca3Al2O6 (C3A) as a sintering additive. Temperature dependence of cathodoluminescence (CL) for the ceramics was investigated in order to obtain information on lattice defects. The CL peak intensity at 3.5 eV in the ceramics sintered with 1.0 mass% C3A decreased with increasing temperature, so called thermal quenching. The maximum CL peak intensity of the ceramics sintered with 4.8 mass% C3A was much lower than that with 1.0 mass% C3A, reflecting that the oxygen-induced defect density dramatically decreased with increasing amount of C3A. In case of the ceramics sintered with 4.8 mass% C3A, the CL peak intensity at 3.4 eV showed the thermal quenching in the range of 130 - 350 K, whereas in the range of 80 - 130 K and 350 - 475 K, it increased with increasing temperature, so called “negative” thermal quenching. From the results, we suggest a presence of at least two trapping levels in the ceramics sintered with C3A.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

261-264

Citation:

Online since:

September 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. A. Slack, J. Phys. Chem. Solids 34 (1973), p.321.

Google Scholar

[2] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg and S. L. Gilbert, J. Appl. Phys. 44 (1973), p.292.

DOI: 10.1063/1.1661876

Google Scholar

[3] P. B. Perry and R. F. Rutz, Appl. Phys. Lett. 33 (1978), p.319.

Google Scholar

[4] H. Yamashita, K. Fukui, S. Misawa and S. Yoshida, J. Appl. Phys. 50 (1979), p.896.

Google Scholar

[5] N. Kuramoto, H. Taniguchi and I. Aso, Ceramic Bulletin 68 (1989), p.883.

Google Scholar

[6] T. Honma, T. Tooyama, Y. Kuroki, T. Okamoto, M. Takata, Y. Kanechika, M. Azuma and H. Taniguchi, Advanced Materials Research 11-12 (2006), p.179.

DOI: 10.4028/www.scientific.net/amr.11-12.179

Google Scholar

[7] T. Honma, Y. Kuroki, T. Okamoto, M. Takata, Y. Kanechika, M. Azuma and H. Taniguchi, Ceramics International (in press).

Google Scholar

[8] Y. L. Khong and A. T. Collins, Diamond Relat. Mater. 2 (1993), p.1.

Google Scholar

[9] M. Watanabe, M. Sakai, H. Shibata, C. Satou, S. Satou, T. Shibayama, H. Tampo, A. Yamada, K. Matsubara, K. Sakurai, S. Ishizuka, S. Niki, K. Maeda and I. Niikura, Physica B 376-377 (2006), p.711.

DOI: 10.1016/j.physb.2005.12.178

Google Scholar

[10] F. E. Williams and H. Eyring, J. Chem. Phys. 15 (1947), p.289.

Google Scholar

[11] F. M. Lea and C. H. Desch, The Chemistry of Cement and Concrete, 2nd ed., Edward Arnold and Co., London, (1956), p.52. e-mail: takata@vos. nagaokaut. ac. jp Fax: +81-258-47-3604, http: /takata. nagaokaut. ac. jp.

Google Scholar