Investigation of the Bioactivity of Dental Ceramic / Bioactive Glass Composites Prepared by the Sol Gel Route

Article Preview

Abstract:

Sol-gel derived glasses have been reported to express considerably higher bioactivity than melt-derived ones. The use of the sol-gel method for the fabrication of dental ceramic bioactive glass composites has resulted in composites consisting of an amorphous glassy network into which crystals of Calcium Silicate (CS), Wollastonite (W), leucite (Lt) and Fluorapatite (FAp) are dispersed. Thus, the aim of the present study was the investigation of the bioactivity of sol-gel derived dental ceramic/bioactive glass composites, in the form of powders and in thermally treated disk shaped specimens. Fourier Transform Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM) were used to characterize the reacted products. The sol-gel derived dental glass ceramic composites present high bioactivity compared to the respective melt-derived ones, which is attributed to the higher CaO content and the crystallization of bioactive W and CS crystal phases during the fabrication process. However, the powdered samples presented faster HCAp formation compared to the respective specimens, due to their higher surface energy.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 396-398)

Pages:

119-122

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] E. Kontonasaki, A. Sivropoulou, L. Papadopoulou, P. Garefis, K. Paraskevopoulos and P. Koidis: J. Oral Rehabil. Vol. 34 (2007), p.57.

DOI: 10.1111/j.1365-2842.2006.01622.x

Google Scholar

[2] E. Kontonasaki, L. Papadopoulou, T. Zorba, E. Pavlidou, K.M. Paraskevopoulos and P. Koidis: J. Oral Rehabil. Vol. 30 (2003), p.893.

DOI: 10.1046/j.1365-2842.2003.01072.x

Google Scholar

[3] P. Sepulveda, J R Jones and L L Hench: J. Biomed. Mater. Res. Vol. 58 (2001), p.734.

Google Scholar

[4] J. Zhong and D.C. Greenspan: J. Biomed. Mater. Res. (Appl. Biomater) Vol. 53 (2000), p.694.

Google Scholar

[5] A. Oyane, H.M. Kim, T. Furuya, T. Kokubo, T. Miyazaki, T. Nakamura: J. Biomed. Mater. Res. Vol. 65A (2003), p.188.

DOI: 10.1002/jbm.a.10482

Google Scholar

[6] E. Kontonasaki, N. Kantiranis, L. Papadopoulou, X. Chatzistavrou, P. Kavouras, T. Zorba, A. Sivropoulou, K. Chrissafis, K.M. Paraskevopoulos and P. Koidis: Dent. Mater. (2008) doi: 10. 1016/j. dental. 2008. 03. 002.

DOI: 10.1016/j.dental.2008.03.002

Google Scholar

[7] O.M. Goudouri, E. Kontonasaki, X. Chatzistavrou, N. Kantiranis, L. Papadopoulou, K. Chrissafis, P. Koidis and K.M. Paraskevopoulos: submitted to the 21 st International Symposium of Ceramics in Medicine - Bioceramics 21, Búzios RJ, Brazil, October (2008).

DOI: 10.4028/www.scientific.net/kem.396-398.153

Google Scholar

[8] E. Kontonasaki, T. Zorba, L. Papadopoulou, E. Pavlidou, X. Chatzistavrou, K. Paraskevopoulos, P. Koidis: Cryst. Res. Technol. Vol. 37 (2002), p.1165.

DOI: 10.1002/1521-4079(200211)37:11<1165::aid-crat1165>3.0.co;2-r

Google Scholar

[9] P. Sepulveda, J R Jones and L L Hench: J. Biomed. Mater. Res. Vol. 61 (2002), p.301.

Google Scholar

[10] P. Siriphannon, Y. Kameshima, A. Yasumori, K. Okada and S. Hayashi: J. Europ. Ceram. Soc. Vol. 22 (2002), p.511. (a) (b) Fig. 4. EDS spectra of 58dg20 specimens after (a) 4 and (b) 12 days in c-SBF.

Google Scholar