Sol-Gel Synthesis of FHA Nanoparticles and CDHA Agglomerates from a Mixture with a Nonstochiometric Ca/P Ratio

Article Preview

Abstract:

The aim of this study was to investigate the sol gel synthesis of HA/FA nanoparticles and the possible formation of TCP phase or unstoichiometric calcium deficient hydroxyapatite (CDHA) from the precursors with a Ca/P ratio of 1.62. In order to prepare the sol, the solutions of Triethyl phosphite, ammonium fluoride and calcium nitrate in ethanol were used respectively as P, F and Ca precursors. The crystallinity, particle and crystallite size, powder morphology, chemical structure and phase analysis were investigated by SEM, XRD, FT-IR and Zeta sizer experiment. A multiphase compound containing hydroxyapatite (HA) and fluoroapatite (FA) nanoparticles and calcium deficient hudroxyapatite (CDHA) agglomerates was obtained. The size of the crystallites estimated from XRD patterns using Scherrer equation and the crystallinity of HA phase were about 5 nm and 66% respectively. The zeta sizer experiments for the dispersed particles in its own conditions showed an average size of 98 nm.

You might also be interested in these eBooks

Info:

Periodical:

Key Engineering Materials (Volumes 396-398)

Pages:

607-610

Citation:

Online since:

October 2008

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W. Suchanek and M. Yoshimura, in: Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants, Journal of MATERIALS RESEARCH, J. Mater. Res., Vol. 13, No. 1, Jan (1998).

DOI: 10.1557/jmr.1998.0015

Google Scholar

[2] C.P.A.T. Klein, J.G.C. Wolke and K. de Groot, in: An introduction to Bioceramics, edited by L. L. Hench and J. Wilson, Chapter 11, World Scientific Publishing (1993).

Google Scholar

[3] De Lange G. L, Donath K, in: Interface between bone tissue and implants of solid hydroxyapatite or hydroxyapatite-coated titanium implants, Biomaterials 10 1989 121.

DOI: 10.1016/0142-9612(89)90044-6

Google Scholar

[4] Moreno EC, Kresak M, Zahradnik RT, in: Fluoridated hydroxyapatite solubility and caries formation, Nature 1974; 247: 64-5.

DOI: 10.1038/247064a0

Google Scholar

[5] K. Ozeki, Y. Fukui, H. Aoki, in: Influence of the calcium phosphate content of the target on the phase composition and deposition rate of sputtered films, Applid Surface Science 253 (2007) 5040-5044.

DOI: 10.1016/j.apsusc.2006.11.011

Google Scholar

[6] Hae-Won Kim, Hyoun-Ee Kim, Jonathan C. Knowles, in: Fluor-hydroxyapatite sol-gel coating on titanium substrate for hard tissue implants, Biomaterials 25 (2004) 3351-3358.

DOI: 10.1016/j.biomaterials.2003.09.104

Google Scholar

[7] P. Kasten, R. Luginb. uhl, M. van Griensven, T. Barkhausen, C. Krettek, M. Bohner, U. Bosch, in: Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, b-tricalcium phosphate and demineralized bone matrix, Biomaterials 24 (2003).

DOI: 10.1016/s0142-9612(03)00062-0

Google Scholar

[8] Philip Kasten, Julia Vogel, Reto Luginbu¨ hl, Philip Niemeyer, Marcus Tonak, Helga Lorenz, Lars Helbig, Stefan Weiss, Jo¨ rg Fellenberg, Albrecht Leo, Hans-Georg Simank, Wiltrud Richter, in: Ectopic bone formation associated with mesenchymal stem cells in a resorbable calcium deficient hydroxyapatite carrier, Biomaterials 26 (2005).

DOI: 10.1016/j.biomaterials.2005.03.001

Google Scholar

[9] Liu Dean-Mo, Troczynski T., Tseng Wenjea J, in: Water-based sol-gel synthesis of hydroxyapatite: process development, Biomaterials 22 (2001) 1721-1730.

DOI: 10.1016/s0142-9612(00)00332-x

Google Scholar

[10] Feng Wang, Mu-sen Li, Yu-peng Lu, Yong-xin Qi, in: A simple sol-gel technique for preparing hydroxyapatite nanopowders, Materials Letters 59 (2005) 916- 919.

DOI: 10.1016/j.matlet.2004.08.041

Google Scholar

[11] Hae-Won Kim, Long-Hao Li, Young-Hag Koh, Jonathan C. Knowles, and Hyoun-Ee Kim, in: Sol-Gel Preparation and Properties of Fluoride-Substituted Hydroxyapatite Powders, J. Am. Ceram. Soc., 87.

DOI: 10.1111/j.1151-2916.2004.tb06344.x

Google Scholar

[10] 1939-1944 (2004).

Google Scholar

[12] Anastasios Antonakos, Efthymios Liarokapis, Theodora Leventouri, in: Micro-Raman and FTIR studies of synthetic and natural apatites, Biomaterials 28 (2007) 3043-3054.

DOI: 10.1016/j.biomaterials.2007.02.028

Google Scholar

[13] E. Landi, A. Tampieri, G. Celotti, and S. Sprio, in: Densification Behaviour and Mechanisms of Synthetic Hydroxyapatites, J. Eur. Ceram. Soc., 20, 2377-87 (2000).

DOI: 10.1016/s0955-2219(00)00154-0

Google Scholar