Ultimate Strengthening, Theoretical and Limit Tool Hardness

Article Preview

Abstract:

The influence of passing from a microcrystalline to a nanocrystalline structure on the mechanical properties of chromium deposited by magnetron sputtering is studied. The possibility of additional strengthening nanomaterials due to enrichment of grain boundaries by “useful” additives elements is established. A wide spectrum of materials in different structural states was investigated by the method of micromechanical tests. The notions of the “theoretical” hardness (largest hardness for the material) and “limit tool” hardness, connected with tool limitations in indentation, are introduced.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-136

Citation:

Online since:

March 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.G. Gryaznov and L.I. Trusov: Progr. Mater. Sci. Vol. 37 No. 4 (1993), p.289.

Google Scholar

[2] G.E. Fougere, J.R. Weertman and R.W. Siegel: Scripta Met. Vol. 6 (1992), p.1879.

Google Scholar

[3] N.G. Nieh and J. Wadsworth: Scripta Met. Mater. Vol. 25 (1991), p.955.

Google Scholar

[4] C.W. Su, B.W. Chua, L. Lu and M.O. Lai: Mater. Sci. Eng. A. Vol. 402 (2005), p.163.

Google Scholar

[5] K. Kumar et al.: Acta Mater. Vol. 51 (2003).

Google Scholar

[6] T. Christman: Scripta Met. Mater. Vol. 28 (1993), p.1495.

Google Scholar

[7] S.A. Firstov, T.G. Rogul et al., in: NATO ARW -Materials with high strength‖, Kiev, 2003, Kluver Publisher (2004), p.341.

Google Scholar

[8] S.A. Firstov, T.G. Rogul et al.: Problems of Materials Science (Voprosi materialovedenia), (2003), 1(33), p.201.

Google Scholar

[9] A.W. Thompson: Metal . Trans. Vol. 8A, 6 (1977), p.833.

Google Scholar

[10] S.A. Firstov, N.V. Grajvoronsky and G.F. Sarzhan: Met. Phys. Adv. Tech. Vol. 17 (1998), p.105.

Google Scholar

[11] S. Veprek, S. Reiprich and L. Shizhi: Appl. Phys. Lett. Vol. 66 (20) (1995), p.2640.

Google Scholar

[12] S. Veprek and S. Reiprich: Thin Solid Films Vol. 268 (1995), p.64.

Google Scholar

[13] L.J. Gibson and M.F. Ashby: Cellular solids: Structure & properties, Oxford: Pergamon Press, ISBN: 0-08-036607-4, (1988).

DOI: 10.1002/adv.1989.060090207

Google Scholar

[14] R.Z. Valiev and I.V. Alexandrov: Nanostructured Materials produced by Severe Plastic Deformation (in Russian), Moskow, Logos, RF, 272, (2000).

Google Scholar

[15] Y-T Cheng and Ch-M Cheng: Appl. Phys. Lett. Vol. 73, No. 5 (1998), p.614.

Google Scholar

[16] W.C. Oliver and G.M. Pharr: J. Mater. Res. Vol. 7, No. 6 (1992), p.1564.

Google Scholar

[17] S.A. Firstov and T.G. Rogul (in Russian), Reports of the National Academy of Sciences of Ukraine (Dopovidi NANU), № 4, (2007), p.110.

Google Scholar

[18] J. Hirth and I. Lothe: Theory of Dislocations, McGraw-Hill, (1968).

Google Scholar

[19] A. Kelly: Strong solids, Clarendon Press. Oxford, 261, (1973).

Google Scholar

[20] D. Tabor: Phil. Mag.A., Vol. 74, No. 5 (1996), p.1207.

Google Scholar

[21] K. Johnson: Contact mechanics, Cambridge University Press, 510, (1987).

Google Scholar

[22] W.C. Oliver and G.M. Pharr: J. Mater. Res. Vol. 19, No. 1 (2004), p.3.

Google Scholar

[23] S.A. Firstov, V.F. Gorban et al. (in Russian), Reports of the National Academy of Sciences of Ukraine (Dopovidi NANU), 12 (2007), p.100.

Google Scholar