Fractality of Simulated Fracture

Article Preview

Abstract:

The paper is focussed on numerical simulations of the fracture of a quasi-brittle specimen due to its impact onto a fixed rigid elastic plate. The failure of the specimen after the impact is modelled in two ways based on the physical discretization of continuum: via physical discrete elements and pseudo-particles. Advantages and drawbacks of both used methods are discussed. The size distribution of the fragments of the broken specimen resulting from physical discrete element model simulation follows a power law, which indicates the ability of the numerical model to identify the fractal nature of the fracture. The pseudo-particle model, on the other side, can successfully predict the kinematics of the fragments of the specimen under impact failure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

154-160

Citation:

Online since:

March 2009

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2009 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Buchanan: Ubiquity: The Science of History… or Why the World is Simpler Than We Think, Weidenfeld & Nicolson, London (2000).

Google Scholar

[2] L. Oddershede, P. Dimon and J. Bohr: Phys. Rev. Lett. Vol. 71, (1993), p.3107.

Google Scholar

[3] B.L. Karihaloo: Fracture mechanics of concrete, Longman Scientific & Technical, New York (1995).

Google Scholar

[4] Z.P. Bažant and J. Planas: Fracture and Size Effect in Concrete and other Quasibrittle Materials, CRC Press, Boca Raton, Florida (1998).

DOI: 10.1201/9780203756799

Google Scholar

[5] S.P. Shah, S.E. Swartz and Ch. Ouyang: Fracture mechanics of structural concrete: applications of fracture mechanics to concrete, rock, and other quasi-brittle materials, John Wiley & Sons, Inc., New York. (1995).

DOI: 10.1016/0141-0296(96)84816-4

Google Scholar

[6] J.G.M. van Mier: Fracture processes of concrete - assessment of material parameters for fracture models, CRC Press, Boca Raton, Florida (1997).

Google Scholar

[7] B.B. Mandelbrot: Fractal Geometry of +ature, W. H. Freeman & Co, San Francisco (1982).

Google Scholar

[8] V. E. Saouma, C.C. Barton and N.A. Gamaleldin: Eng. Fract. Mech., Vol. 35 No. 1/2/3 (1990), p.47.

Google Scholar

[9] A. M. Brandt and G. Prokopski: J. Mater. Sci. Vol. 28 (1993), p.4762.

Google Scholar

[10] Z.P. Bažant: J. Eng. Mater. Technol. Vol. 117 (1995), p.361.

Google Scholar

[11] A. Carpinteri, B. Chiaia, and S. Invernizzi: Theor. Appl. Fract. Mech. Vol. 31 (1999), p.163.

Google Scholar

[12] A. Carpinteri, and S. Invernizzi: Uniaxial tensile test and fractal evaluation of softening damage in concrete, Fracture Mechanics of Concrete Structures, de Borst et al. (eds), Swets & Zeitlinger, Lisse, (2001) p.19.

Google Scholar

[13] V. Mechtcherine and H.S. Muller: Fractological investigation on the fracture in concrete, Fracture Mechanics of Concrete Structures, de Borst et al. (eds), Swets & Zeitlinger, Lisse, 81-88 (2001).

Google Scholar

[14] P. Frantík, (2007) FyDiK application, http: /www. kitnarf. cz/fydik, 2007-(2008).

Google Scholar